In the field of pathology, micro-computed tomography (micro-CT) has become an attractive imaging modality because it enables full analysis of the three-dimensional characteristics of a tissue sample or organ in a noninvasive manner. However, because of the complexity of the three-dimensional information, understanding would be improved by development of analytical methods and software such as those implemented for clinical CT. As the accurate identification of tissue components is critical for this purpose, we have developed a deep neural network (DNN) to analyze whole-tissue images (WTIs) and whole-block images (WBIs) of neoplastic cancer tissue using micro-CT. The aim of this study was to segment vessels from WTIs and WBIs in a volumetric segmentation method using DNN. To accelerate the segmentation process while retaining accuracy, a convolutional block in DNN was improved by introducing a residual inception block. Three colorectal tissue samples were collected and one WTI and 70 WBIs were acquired by a micro-CT scanner. The implemented segmentation method was then tested on the WTI and WBIs. As a proof-of-concept study, our method successfully segmented the vessels on all WTI and WBIs of the colorectal tissue sample. In addition, despite the large size of the images for analysis, all segmentation processes were completed in 10 minutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927274 | PMC |
http://dx.doi.org/10.1016/j.ajpath.2020.12.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!