Background And Purpose: Proton therapy has been proposed as a technique to improve the long-term quality of life of breast cancer patients. This is due to its ability to reduce the dose to healthy tissue compared to conventional X-ray therapy. The aim of this study was to investigate the risk of secondary carcinogenesis due to proton therapy compared to hybrid IMRT for breast treatments.
Material And Methods: In this study, the Pinnacle treatment planning system was used to simulate treatment plans for 15 female left-sided whole breast cancer patients with deep inspiration breath hold scans. Two treatment plans were generated for each patient: hybrid intensity modulated radiotherapy (h-IMRT) and intensity modulated proton therapy (IMPT). Using the dose-volume histograms (DVHs) from these plans, the mean lifetime attributed risk (LAR) for both lungs and the contralateral breast were evaluated using the BEIR VII and Schneider full risk models.
Results: The results from both risk models show lower LAR estimates for the IMPT treatment plan compared to the h-IMRT treatment plan. This result was observed for all organs of interest and was consistent amongst the two separate risk models. For both treatment plans, the organs from most to least at risk were: ipsilateral lung, contralateral breast, and contralateral lung. In all cases, the risk estimated via the BEIR VII model was higher that the Schneider full risk model.
Conclusion: The use of proton therapy for breast treatments leads to reduced risk estimates for secondary carcinogenesis. Therefore, proton therapy shows promise in improving the long term treatment outcome of breast patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0284186X.2020.1862421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!