[Erosion morphology and the characteristics of runoff and sediment yielding in platform-slope system of opencast coal mine].

Ying Yong Sheng Tai Xue Bao

State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.

Published: September 2020

In the open pit, runoff from the platform is large discharge and rapid afflux, which often results in serious gully erosion of dump slope. The study of erosion process under catchment conditions of the platform-slope system is still backward. In this study, field scouring experiments were conducted to investigate runoff characteristics and sediment yield processes of the platform-slope system under different flow discharges (48, 60, 72 and 84 L·min). Our results showed that rill erosion dominated the platform-slope system under the flow discharge of 48 L·min, and gully was formed under 60-84 L·min. The flow velocity of the platform and the slope showed an abrupting-fluctuating-stable trend with the duration of discharge. The flow velocity of the platform was smaller than that of the slope, with the magnitude of reduction at 8.3%-67.1%. The highest flow velocity appeared on the up-slop/down-slope, being 18.5%-44.6% higher than that of the middle-slope. In general, the sediment yield rate of the platform and the slope varied with the duration of discharge, with the sediment yield rate of the slope being 17.4 times as that of the platform. The ratio of gully width to depth showed substantial difference between the platform and slope. The platform generally had the largest ratio than the slope. For the slope, the largest ratio appeared on the middle-slop/down-slope, being 1.36-1.93 times as that of the up-slope. The morphology of rill and gully along the platform to down-slope presented in the form of "wide and shallow-narrow and deep-wide and shallow". Rill erosion mainly concentrated in the platform and the middle slope under the flow discharge of 48 L·min, contributed 29.9% and 26.8% of the total erosion volume, respectively. When the flow discharge increased to 60-84 L·min, the largest average across-section areas (1083.25-1737.86 cm) formed on the up-slope accounted for 36.1%-44.7% of the total erosion volume. Our results provided evidence for modelling soil and water erosion of the platform-slope system in opencast coal mine.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202009.018DOI Listing

Publication Analysis

Top Keywords

platform-slope system
20
sediment yield
12
flow discharge
12
flow velocity
12
platform slope
12
platform
9
slope
9
system opencast
8
opencast coal
8
system flow
8

Similar Publications

China has made a breakthrough in shale gas production in the deepwater shelf shales of the Lower Cambrian Qiongzhusi Formation and the Upper Ordovician-Early Silurian Wufeng-Longmaxi Formation. In recent years, active shale oil and gas shows have also been found in the shale system of the Lower Carboniferous Dawuba Formation in the Yaziluo rift trough, south of Guizhou province in Southern China, which was formed in the tensional geotectonic setting of the Palaeo-Tethys Ocean from the Devonian through the Carboniferous to the Permian. This tectonic background makes the sedimentary environments and organic matter accumulation mechanisms of Dawuba shales vastly different from deepwater shales.

View Article and Find Full Text PDF

[Erosion morphology and the characteristics of runoff and sediment yielding in platform-slope system of opencast coal mine].

Ying Yong Sheng Tai Xue Bao

September 2020

State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.

In the open pit, runoff from the platform is large discharge and rapid afflux, which often results in serious gully erosion of dump slope. The study of erosion process under catchment conditions of the platform-slope system is still backward. In this study, field scouring experiments were conducted to investigate runoff characteristics and sediment yield processes of the platform-slope system under different flow discharges (48, 60, 72 and 84 L·min).

View Article and Find Full Text PDF

Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor.

Biosens Bioelectron

February 2021

Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea. Electronic address:

In this paper, we propose a novel field-effect transistor (FET) using graphene, which is a two-dimensional (2D) nanomaterial, capable of evaluating water quality, and immobilizing the surface of a graphene micropatterned transistor with a highly responsive bioprobe for a water contamination indicator, geosmin, with high selectivity. A high-quality bioprobe-immobilized graphene FET (GFET) was fabricated for the real-time monitoring of geosmin using a liquid-gate measurement configuration. Immobilization was confirmed by measuring the change in the electrical characteristics of the platform (slope of the current-voltage (I-V) curve) and fluorescence images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!