Based on field experiments in 2017-2019, we examined the characteristics, yield effect and regulatory mechanism of light energy utilization in alfalfa/gramineous forage grass intercropping. With monoculture of alfalfa, forage triticale (C3 plant), and forage maize (C4 plant) as control, we measured the yield effect, the effect of light energy utilization factor on yield formation, the characteristic difference and mechanism of light energy utilization under alfalfa/triticale and alfalfa/maize intercropping patterns. Results showed that land equivalent ratios of both intercropping patterns were all greater than 1, indicating that land utilization ratio and yield benefit of the two intercropping patterns were higher than that of monoculture, among which alfalfa/triticale intercropping pattern was the most promising one. The contribution of light energy utilization factors to yield was following an order of leaf area index (1.531) > net photosynthetic rate (0.882) > intercellular CO concentration (0.282) > transpiration rate (-0.229) > canopy opening (-0.291) > PAR interception rate (-0.681) > stomatal conductance (-0.751). Among them, leaf area index was not only one of the important indices to characterize photosynthetic capacity, but also an important component factor of forage crop yield aiming at harvesting nutrients. Therefore, among all factors of photosynthetic characteristics, net photosynthetic rate was the main factor affecting yield. The net photosynthetic rate of alfalfa, triticale and maize under intercropping showed the same pattern, and being different from that of monoculture. The main ways for intercropping to increase net photosynthetic rate included: triticale and maize increased net photosynthetic rate and yield by enhancing the carboxylation fixation capacity of CO and the utilization capacity of strong light, while alfalfa could improve its net photosynthetic rate and promote growth under low light, by increasing the content of chlorophyll b in functional leaves, changing chlorophyll composition and enhancing the collection and transmission of light energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202009.026 | DOI Listing |
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:
High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.
Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!