The aim of this study was to investigate the effect of a 4 weeks in-water swimming-specific repeated-sprint training in hypoxia (RSH) compared to similar training in normoxia (RSN). Following a repeated-measures, counterbalanced cross-over design, 10 swimmers were requested to perform two trials consisting of in-water repeated sprints in hypoxic (RSH, simulated 4,040 m; FiO = 13.7%) or normoxic (RSN, 459 m, FiO calibrated = 20.9%) conditions. In both conditions, 8 additional exercise including 3 sets of 5 × 15 m "all-out" sprints (corresponding to a total of 625 m), with 20 s of passive recovery between efforts and 200 m of easy swimming between sets were included at the end of their swimming program over a 4 weeks period. Hypoxic condition was generated using a simulator pumping air with lowered oxygen concentration into a facial mask. An incremental maximal test on an ergocycle, as well as 100 m and 400 m freestyle swimming performance (real competition format) were assessed before (pre), 7 days (post-1), and 2 weeks (post-2) after intervention. During training, heart rate (HR) and oxygen saturation (SpO) were monitored. RSH showed significantly lower SpO (70.1 ± 4.8% vs. 96.1 ± 2.7%, < 0.01), concomitant with higher mean HR (159 ± 11 bmp vs. 141 ± 6 bmp, < 0.01) than RSN. No significant changes in maximal oxygen uptake, other submaximal physiological parameters, 100 or 400 m swimming performances were found. Although providing additional physiological stress, performing in-water RSH does not provide evidence for higher benefits than RSN to improve swimmers performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739721PMC
http://dx.doi.org/10.3389/fspor.2020.00100DOI Listing

Publication Analysis

Top Keywords

swimming-specific repeated-sprint
8
repeated-sprint training
8
training hypoxia
8
100 400
8
training
5
effects swimming-specific
4
hypoxia training
4
training swimmers
4
swimmers aim
4
aim study
4

Similar Publications

The aim of this study was to identify the relationship between dry-land and in-water strength with performance and kinematic variables in short-distance, middle-distance, and repeated sprint swimming. Fifteen competitive swimmers applied a bench press exercise to measure maximum strength (MS), maximum power (P), strength corresponding to P (F@P), maximum velocity (MV), and velocity corresponding to P (V@P) using F-V and P-V relationships. On a following day, swimmers performed a 10 s tethered swimming sprint (TF), and impulse was measured (IMP).

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of a 4 weeks in-water swimming-specific repeated-sprint training in hypoxia (RSH) compared to similar training in normoxia (RSN). Following a repeated-measures, counterbalanced cross-over design, 10 swimmers were requested to perform two trials consisting of in-water repeated sprints in hypoxic (RSH, simulated 4,040 m; FiO = 13.7%) or normoxic (RSN, 459 m, FiO calibrated = 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!