Knowledge about exercise intensity and energy expenditure combined with trip frequency and duration is necessary for interpreting the character and potential influencing capacity of habitual cycle commuting on e.g., health outcomes. It needs to be investigated with validated methods, which is the purpose of this study. Ten male and 10 female middle-aged habitual commuter cyclists were studied at rest and with maximal exercise tests on a cycle ergometer and a treadmill in the laboratory. During their normal commute in the Stockholm County, Sweden, their oxygen uptake, heart rate, energy expenditure, ventilation, blood lactate, rated perceived exertion, number of stops, durations, route distances and cycling velocities were monitored with validated methods. The frequency of trips was self-reported. The relative exercise intensity was 65% of maximal oxygen uptake, and the energy expenditure was 0.46 kcal per km and kg body weight for both sexes. Sex differences in MET-values (men, 8.7; women 7.4) mirrored higher levels of cycling speed (20%), body weight (29%), oxygen uptake (54%) and ventilation (51%) in men compared to women. The number of METhours per week during peak cycling season averaged 40 for the men and 28 for the women. It corresponded to a total energy expenditure of about 3,500 and 1,880 kcal for men and women, respectively. The number of trips per year was about 370, and the annual distance cycled was on average 3,500 km for men and 2,300 for women. Cycle commuting is characterized by equal relative aerobic intensity levels and energy requirements for a given distance cycled by men and women. Based on an overall evaluation, it represents a lower range within the vigorous intensity category. The combined levels of oxygen uptake, durations and trip frequencies lead to high levels of METhours and energy expenditure in both men and women during both peak cycling season as well as over the year. Overall, the study presents a novel basis for interpreting cycle commuting in relation to various health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739755 | PMC |
http://dx.doi.org/10.3389/fspor.2020.00065 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Front Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
March 2025
Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China.
Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!