The rise of the coronavirus disease 2019 (COVID-19) in a digital world has expectedly called upon technologies, such as wearables and mobile devices, to work in conjunction with public health interventions to tackle the pandemic. One significant example of this integration is the deployment of proximity tracking apps on smartphones to enhance traditional contact tracing methods. Many countries have adopted proximity tracking apps; however, there is a large degree of global differentiation in the voluntariness of the apps. Further, the concept of a mandatory policy-forcing individuals to use the apps-has been met with ethical concerns (e.g., privacy and liberty). While ethical considerations surrounding deployment have been put forth, such as by the World Health Organization, ethical justifications for a mandatory policy are lacking. Here, we use the Faden-Shebaya framework, which was formed to justify public health interventions, to determine if the compulsory use of proximity tracking apps is ethically appropriate. We show that while theoretically justified, due to the current state of proximity tracking applications and societal factors, it is difficult to defend a mandatory policy in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738463 | PMC |
http://dx.doi.org/10.3389/fmed.2020.590265 | DOI Listing |
Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.
View Article and Find Full Text PDFTalanta
January 2025
Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
The considerable abundance and remarkable stability of sEVs provide substantial benefits for diagnosing Alzheimer's disease. Therefore, precise tracking subtypes of small extracellular vesicles (sEVs) is crucial for screening novel diagnostic biomarkers and developing therapeutic technologies. We propose a three-target recognition-mediated proximity ligation assay for the precise identification of sEV subtypes utilizing three specifically designed probes: one for the exosomal surface protein CD63 recognition, one for fixing the biolipid layer, and the third for the identification of distinctive protein associated with a specific subtype of sEVs (L1CAM positive sEVs).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 1828585, Japan.
Recently, aerial manipulations are becoming more and more important for the practical applications of unmanned aerial vehicles (UAV) to choose, transport, and place objects in global space. In this paper, an aerial manipulation system consisting of a UAV, two onboard cameras, and a multi-fingered robotic hand with proximity sensors is developed. To achieve self-contained autonomous navigation to a targeted object, onboard tracking and depth cameras are used to detect the targeted object and to control the UAV to reach the target object, even in a Global Positioning System-denied environment.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
School of Sport, Exercise, and Health Science; Loughborough University (UK).
This study assessed the cardiorespiratory fitness, running biomechanics, muscle architecture and training characteristics of a 76-year-old female runner who currently holds the world record 1500m to marathon in the women's 75-79 age category. maximal oxygen uptake (V̇O), running economy (RE), lactate threshold (LT) and lactate turnpoint (LTP), maximal heart rate (HR), and running biomechanics were measured during a discontinuous treadmill protocol followed by a maximal incremental test. Muscle architecture was assessed using ultrasound.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy.
The variability of East African short rains (October-December) has profound socioeconomic and environmental impacts on the region, making accurate seasonal rainfall predictions essential. We evaluated the predictability of East African short rains using model ensembles from the multi-system seasonal retrospective forecasts from the Copernicus Climate Change Service (C3S). We assess the prediction skill for 1- to 5-month lead times using forecasts initialized in September for each year from 1993 to 2016.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!