Background: Cervical cancer is one of the most common malignancies in women, leading to major health problems for its high morbidity and mortality. Numerous studies have demonstrated that circular RNAs (circRNAs) could be participated in the progression of multifarious diseases, especially plentiful carcinomas. CircAMOTL1 (angiomotin-like1, ID: hsa_circ_0004214), which is located on human chromosome 11:9 4532555-94533477, is involved in the occurrence of breast cancer, etc. However, the intrinsic and concrete molecular mechanism of circAMOTL1 in cervical carcinomas remained thoroughly unclear, which was also the bottleneck of circRNAs studies in cancer.
Methods: The relative expression levels of circAMOTL1 and miR-526b in cervical carcinoma patients' specimens and cervical carcinoma cell lines were detected by RT-qPCR. Through experiments including loss-function and overexpression, the biological effects of circAMOTL1 and miR-526b on the proliferation, migration, apoptosis, and tumorigenicity were explored in cervical carcinomas. Dual luciferase reporter gene analysis, western blot, and other methods were adopted to explore the circAMOTL1 potential mechanism in cervical carcinomas.
Results: In our experiments, our researches displayed that circAMOTL1 was significantly higher expression in cervical carcinomas specimens and cell lines. Further experiments illustrated that the knockdown of circAMOTL1 could restrain the malignant phenotype, AKT signaling, and epithelial-mesenchymal transition (EMT) of in cervical carcinomas cells. Meanwhile miR-526b was downregulated in cervical carcinomas and even miR-526b could partially reverse circAMOTL1 function in malignant cervical tumor cells. CircAMOTL1 acts as a microRNA (miRNA) sponge that actively regulates the expression of salt-inducible kinase 2 (SIK2) to sponge miR-526b and subsequently increases malignant phenotypes of cervical carcinomas cells. In a word, circAMOTL1 acts a carcinogenic role and miR-526b serves as the opposite function of antioncogene in the cervical carcinoma pathogenesis.
Conclusion: CircAMOTL1-miR-526b-SIK2 axis referred to the malignant progression and development of cervical carcinomas. CircAMOTL1 expression was inversely correlated with miR-526b and positively correlated with SIK2 mRNA in cervical cancer tissues. Thus, circAMOTL1 exerted an oncogenic role in cervical cancer progression through sponging miR-526b. Taken together, our study revealed that circAMOTL1 acted as an oncogene and probably was a potential therapeutic target for the cervical cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744824 | PMC |
http://dx.doi.org/10.3389/fcell.2020.568190 | DOI Listing |
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.
Materials And Methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.
Int J Pharm
January 2025
Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China. Electronic address:
Oral squamous cell carcinoma (OSCC) is the most common subtype of head and neck malignancies, characterized by a five-year survival rate that remains persistently below 50%, indicative of limited progress in therapeutic interventions. There is an urgent imperative to develop innovative therapeutic strategies, warranting the investigation of advanced treatment modalities. Nanocarriers offer a promising avenue by significantly enhancing drug properties and pharmacokinetics.
View Article and Find Full Text PDFDis Esophagus
January 2025
Department of Esophageal Surgery, National Cancer Center, Tokyo, Japan.
Definitive chemoradiotherapy (dCRT) is the standard treatment for unresectable (T4) esophageal squamous cell carcinoma (ESCC), but the prognosis is poor. Borderline resectable (T3br) ESCC has been discussed, but its clinical features and appropriate treatment are unclear. The effects of docetaxel plus cisplatin and 5-fluorouracil (DCF) therapy and subsequent surgery for potentially unresectable ESCC remain controversial.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!