•We have developed a framework to describe the dynamics of Functional Connectivity (dFC) estimated from brain activity time-series as a complex random walk in the space of possible functional networks. This conceptual and methodological framework considers dFC as a smooth reconfiguration process, combining "liquid" and "coordinated" aspects. Unlike other previous approaches, our method does not require the explicit extraction of discrete connectivity states.•In our previous work, we introduced several metrics for the quantitative characterization of the dFC random walk. First, dFC speed analyses extract the distribution of the time-resolved rate of reconfiguration of FC along time. These distributions have a clear peak (typical dFC speed, that can already serve as a biomarker) and fat tails (denoting deviations from Gaussianity that can be detected by suitable scaling analyses of FC network streams). Second, meta-connectivity (MC) analyses identify groups of functional links whose fluctuations co-vary in time and that define veritable dFC modules organized along specific dFC meta-hub controllers (differing from conventional FC modules and hubs). The decomposition of whole-brain dFC by MC allows performing dFC speed analyses separately for each of the detected dFC modules.•We present here blocks and pipelines for dFC random walk analyses that are made easily available through a dedicated MATLAB toolbox (), openly downloadable. Although we applied such analyses mostly to fMRI resting state data, in principle our methods can be extended to any type of neural activity (from Local Field Potentials to EEG, MEG, fNIRS, etc.) or even non-neural time-series.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736993PMC
http://dx.doi.org/10.1016/j.mex.2020.101168DOI Listing

Publication Analysis

Top Keywords

random walk
16
dfc speed
12
dfc
11
functional connectivity
8
complex random
8
dfc random
8
speed analyses
8
analyses
6
dynamic functional
4
connectivity complex
4

Similar Publications

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is the third most common and second most deadly cancer worldwide, with significant morbidity and mortality risks. Despite advancements in surgical care, postoperative complications and recovery challenges persist. The severity of these issues is linked to preoperative functional capacity and emotional distress.

View Article and Find Full Text PDF

Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, primarily affecting the respiratory and digestive systems. Respiratory rehabilitation techniques play a crucial role in managing pulmonary symptoms and maintaining lung function in CF patients. Although various techniques have been developed and applied, there is currently no globally recognised optimal respiratory rehabilitation regimen.

View Article and Find Full Text PDF

Introduction: Approximately two-thirds of Brazilian older adults have hypertension. Aerobic training is the first-line non-pharmacological therapy for hypertension. However, the effects of different aerobic training approaches on ambulatory blood pressure in older adults are uncertain.

View Article and Find Full Text PDF

Background And Objective: Fibromyalgia is a condition characterised by disabling levels of pain of varying intensity. Aerobic exercise may play a role in reducing pain in these patients. The aim of this review is to assess the dose of aerobic exercise needed, based on the frequency, intensity, type, time, volume and progression (FITT-VP) model, to obtain clinically relevant reductions in pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!