Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A P300 brain-computer interface (BCI) is a paradigm, where text characters are decoded from event-related potentials (ERPs). In a popular implementation, called P300 speller, a subject looks at a display where characters are flashing and selects one character by attending to it. The selection is recognized as the item with the strongest ERP. The speller performs well when cortical responses to target and non-target stimuli are sufficiently different. Although many strategies have been proposed for improving the BCI spelling, a relatively simple one received insufficient attention in the literature: reduction of the visual field to diminish the contribution from non-target stimuli. Previously, this idea was implemented in a single-stimulus switch that issued an urgent command like stopping a robot. To tackle this approach further, we ran a pilot experiment where ten subjects operated a traditional P300 speller or wore a binocular aperture that confined their sight to the central visual field. As intended, visual field restriction resulted in a replacement of non-target ERPs with EEG rhythms asynchronous to stimulus periodicity. Changes in target ERPs were found in half of the subjects and were individually variable. While classification accuracy was slightly better for the aperture condition (84.3 ± 2.9%, mean ± standard error) than the no-aperture condition (81.0 ± 2.6%), this difference was not statistically significant for the entire sample of subjects ( = 10). For both the aperture and no-aperture conditions, classification accuracy improved over 4 days of training, more so for the aperture condition (from 72.0 ± 6.3% to 87.0 ± 3.9% and from 72.0 ± 5.6% to 97.0 ± 2.2% for the no-aperture and aperture conditions, respectively). Although in this study BCI performance was not substantially altered, we suggest that with further refinement this approach could speed up BCI operations and reduce user fatigue. Additionally, instead of wearing an aperture, non-targets could be removed algorithmically or with a hybrid interface that utilizes an eye tracker. We further discuss how a P300 speller could be improved by taking advantage of the different physiological properties of the central and peripheral vision. Finally, we suggest that the proposed experimental approach could be used in basic research on the mechanisms of visual processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744588 | PMC |
http://dx.doi.org/10.3389/fnins.2020.604629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!