Background: Microorganisms are known to be involved in the formation of biofilm. These biofilms are often seen in chronic wound infections, surgical site infections, implants etc., These are capable of causing recalcitrant infections and most of them are also known to possess high antibiotic resistance.

Objectives: This study was conducted to detect the biofilm formation in bacterial isolates from chronic wound infections.

Materials And Methods: In the present study, ninety two isolates from chronic wound infections were identified by MALDI-TOF-MS (bioMerieux) and VITEK-2-MS (bioMerieux). These isolates were further screened for biofilm formation by three methods i. e., Tissue Culture Plate method (TCP), Tube Method (TM) and Congo Red Agar (CRA) method. Impact of biofilm production was correlated with the antibiotic resistant pattern.

Statistical Analysis: Statistical analysis was done for all three methods considering TCP as Gold Standard and parameters like senitivity and specificity of TM i.e. 47.2 and 100% respectively.

Results: Out of 92 isolates, biofilm formation was seen in 72 isolates (78.2%) by TCP method. 64 isolates were strong biofilm producers, 8 isolates were moderate biofilm producers and 20 isolates were nonbiofilm producing. High prevalence of biofilm formation was seen in nonhealing ulcers infected with followed by .

Conclusion: Among three screening methods used for detection of biofilm production, TCP method is considered to be a standard and most reliable for screening of biofilm formation in comparison to TM and CRA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733422PMC
http://dx.doi.org/10.4103/jgid.jgid_150_19DOI Listing

Publication Analysis

Top Keywords

biofilm formation
20
chronic wound
16
biofilm production
12
isolates chronic
12
wound infections
12
biofilm
10
isolates
9
detection biofilm
8
bacterial isolates
8
three methods
8

Similar Publications

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging.

View Article and Find Full Text PDF

Nanoarchitectonics for Advancing Bone Graft Technology: Integration of Silver Nanoparticles Against Bacteria and Fungi.

Microorganisms

December 2024

Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil.

Silver nanoparticles have garnered significant attention for their antimicrobial applications. The aim of this study was to develop and characterize a silver nanoparticle-enhanced bone graft and assess its antimicrobial and antibiofilm activities. Bone granules from bovine cancellous femur were impregnated with silver nanoparticles (50 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!