Impact of Mislabeling on Genomic Selection in Cassava Breeding.

Crop Sci

USDA-ARS, Robert W. Holley Center for Agriculture and Health, and Cornell Univ. Section of Plant Breeding and Genetics, Ithaca, NY 14853.

Published: June 2018

In plant breeding, humans occasionally make mistakes. Genomic selection is particularly prone to human error because it involves more steps than conventional phenotypic selection. The impact of human mistakes should be determined to evaluate the cost effectiveness of controlling human error in plant breeding. We used simulation to evaluate the impact of mislabeling, where marker scores from one plant are associated with the performance records of another plant in cassava ( Crantz) breeding. Results showed that, although selection with mislabeling reduced genetic gains, scenarios including six levels of mislabeling (from 5 to 50%) persisted in achieving gain because mislabeling decreased the genetic variance lost from the population. Breeding populations with higher rates of mislabeling experienced lower selection intensity, resulting in higher genetic variance, which partially compensated for the mislabeling. For low mislabeling rates (10% or less), the increased genetic variance observed under mislabeling led to improved accuracy of the prediction model in later selection cycles. Large-scale mislabeling should therefore be prevented, but the value of preventing small-scale mislabeling depends on the effort already being invested in preventing the loss of genetic variance during the course of selection. In a program, such as the one we simulated, that makes no effort to avoid loss of genetic variance, small-scale mislabeling has a less negative effect than expected. We assume that negative effects would be greater if best practices to avoid genetic variance loss were already implemented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680938PMC
http://dx.doi.org/10.2135/cropsci2017.07.0442DOI Listing

Publication Analysis

Top Keywords

genetic variance
24
mislabeling
11
impact mislabeling
8
genomic selection
8
plant breeding
8
human error
8
small-scale mislabeling
8
loss genetic
8
selection
7
genetic
7

Similar Publications

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.

View Article and Find Full Text PDF

Genomic exploration of the journey of Plasmodium vivax in Latin America.

PLoS Pathog

January 2025

REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.

Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.

View Article and Find Full Text PDF

Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.

View Article and Find Full Text PDF

Objectives: This study examined the correlation between circulating receptor activator for nuclear factor-κB ligand (RANKL) levels and rheumatoid arthritis (RA), and investigated the association between polymorphisms in the RANKL gene and susceptibility to RA.

Method: We searched the Medline, Embase, and Cochrane databases for relevant publications up to September 2024. A meta-analysis was conducted to assess serum/plasma RANKL levels in patients with RA and controls, and to explore the relationship between RANKL rs9533156 and rs2277438 polymorphisms and RA susceptibility.

View Article and Find Full Text PDF

A high-quality assembly revealing the PMEL gene for the unique plumage phenotype in Liancheng ducks.

Gigascience

January 2025

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!