High-resolution solar observations show the complex structure of the magnetohydrodynamic (MHD) wave motion. We apply the techniques of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) to identify the dominant MHD wave modes in a sunspot using the intensity time series. The POD technique was used to find modes that are spatially orthogonal, whereas the DMD technique identifies temporal orthogonality. Here, we show that the combined POD and DMD approaches can successfully identify both sausage and kink modes in a sunspot umbra with an approximately circular cross-sectional shape. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780138 | PMC |
http://dx.doi.org/10.1098/rsta.2020.0181 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Chaos
January 2025
Emergent Complexity in Physical Systems Laboratory (ECPS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
The Birman-Williams theorem gives a connection between the collection of unstable periodic orbits (UPOs) contained within a chaotic attractor and the topology of that attractor, for three-dimensional systems. In certain cases, the fractal dimension of a chaotic attractor in a partial differential equation (PDE) is less than three, even though that attractor is embedded within an infinite-dimensional space. Here, we study the Kuramoto-Sivashinsky PDE at the onset of chaos.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44122, USA.
Data-driven techniques, such as proper orthogonal decomposition (POD) and uniform manifold approximation & projection (UMAP), are powerful methods for understanding polymer behavior in complex systems that extend beyond ideal conditions. They are based on the principle that low-dimensional behaviors are often embedded within the structure and dynamics of complex systems. Here, the internal motions of a thermoresponsive, LCST polymer are investigated for two cases: (1) the coil-to-globule transition that occurs as the system is heated above its critical temperature and (2) intramolecularly crosslinked, single chain nanoparticles (SCNPs) both above and below the critical temperature ().
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.
The solder burrs on the 304V wire surface can easily scratch the vascular tissue during interventional treatment, resulting in complications such as medial tears, bleeding, dissection, and rupture. Abrasive blasting is often used to remove solder burr and obtain a smooth surface for the interventional device. This study conducted an abrasive blasting experiment to explore the effects of process parameters (air pressure, lift-off height, abrasive volume, and abrasive type) on processing time, surface roughness, and mechanical properties to reveal the material removal mechanism.
View Article and Find Full Text PDFGround Water
December 2024
Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, UK.
Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!