A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. | LitMetric

Background: Coinciding with other chronic comorbidities, the prevalence of periodontal disease increases with aging. Mounting evidence has established that senescent cells accumulate at sites of age-related pathologies, where they promote "non-microbial" inflammation. We hypothesized that alveolar bone osteocytes develop senescence characteristics in old age.

Methods: Alveolar bone samples were obtained from young (6 months) and old (20 to 22 months) mice to evaluate the expression of senescence biomarkers by immunofluorescent staining. Osteocyte-enriched fractions were used to characterize the age-related senescence-associated secretory phenotype (SASP) gene expression profile. Primary alveolar bone cells were exposed to the SASP via in vitro senescent conditioned media (SCM) administration. A multiplex assay confirmed protein levels of specific cytokines. Interactions with bacterial components were evaluated by stimulating cells with lipopolysaccharide (LPS).

Results: Increased senescence-associated distension of satellites (SADS) and p16 mRNA expression were identified in alveolar bone osteocytes with aging. These findings were associated with increased levels of DNA damage, and activated p38 MAPK, both inducers of senescence. Furthermore, interleukin-6 (IL6), IL17, IGFBP4, and MMP13 were significantly upregulated with aging in osteocyte-enriched samples. Interestingly, SCM potentiated the LPS-induced expression of IL1α, IL1β, and IL6. Cell migration and differentiation were also impeded by SCM. These in vitro effects were ameliorated by the p38 MAPK inhibitor SB202190.

Conclusions: Accumulation of senescent osteocytes contributes to deterioration of the periodontal environment by exacerbating chronic inflammation and reducing regeneration in old age. Cellular senescence is a cell-intrinsic response to DNA damage, and a host-related mechanism associated with aging that could potentiate inflammation induced by bacterial components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281492PMC
http://dx.doi.org/10.1002/JPER.20-0529DOI Listing

Publication Analysis

Top Keywords

alveolar bone
16
senescent cells
8
chronic inflammation
8
periodontal disease
8
bone osteocytes
8
bacterial components
8
dna damage
8
p38 mapk
8
senescent
4
cells exacerbate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!