Offshore wind power generation requires large areas of sea to accommodate its activities, with increasing claims for exclusive access. As a result, pressure is placed on other established maritime uses, such as commercial fisheries. The latter sector has often been taking a back seat in the thrust to move energy production offshore, thus leading to disagreements and conflicts among the different stakeholder groups. In recognition of the latter, there has been a growing international interest in exploring the combination of multiple maritime activities in the same area (multi-use; MU), including the re-instatement of fishing activities within, or in close proximity to, offshore wind farms (OWFs). We summarise local stakeholder perspectives from two sub-national case studies (East coast of Scotland and Germany's North Sea EEZ) to scope the feasibility of combining multiple uses of the sea, such as offshore wind farms and commercial fisheries. We combined a desk-based review with 15 semi-structured qualitative interviews with key knowledge holders from both industries, regulators, and academia to aggregate key results. Drivers, barriers and resulting effects (positive and negative) for potential multi-use of fisheries and OWFs are listed and ranked (57 factors in total). Factors are of economic, social, policy, legal, and technical nature. To date, in both case study areas, the offshore wind industry has shown little interest in multi-use solutions, unless clear added value is demonstrated and no risks to their operations are involved. In contrast, the commercial fishing sector is proactive towards multi-use projects and acts as a driving force for MU developments. We provide a range of management recommendations, based on stakeholder input, to support progress towards robust decision making in relation to multi-use solutions, including required policy and regulatory framework improvements, good practice guidance, empirical studies, capacity building of stakeholders and improvements of the consultation process. Our findings represent a comprehensive depiction of the current state and key stakeholder aspirations for multi-use solutions combining fisheries and OWFs. We believe that the pathways towards robust decision making in relation to multi-use solutions suggested here are transferable to other international locations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111762DOI Listing

Publication Analysis

Top Keywords

offshore wind
20
multi-use solutions
16
wind farms
12
north sea
8
stakeholder perspectives
8
multi-use
8
commercial fisheries
8
fisheries owfs
8
robust decision
8
decision making
8

Similar Publications

Molecular phylogeny, morphology, and ultrastructure of a Mesomycetozoea member, Sphaeroforma nootkatensis isolated from Pacific oyster, Crassostrea gigas, on the Southern coast of Korea.

Protist

December 2024

Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea. Electronic address:

This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea.

View Article and Find Full Text PDF

Potential feeding sites for seabirds and marine mammals reveal large overlap with offshore wind energy development worldwide.

J Environ Manage

December 2024

Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.

Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.

View Article and Find Full Text PDF

The number of submarine cables in marine environment is increasing. Thus, marine organisms, especially benthic invertebrates are exposed to magnetic fields generated by those cables. The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF) on the behaviour and physiology of Rhithropanopeus harrisii during a series of laboratory experiments.

View Article and Find Full Text PDF

Optimal Environmental Siting of Future Wind Turbines in the North Sea.

Environ Sci Technol

December 2024

Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden 2300 RA, The Netherlands.

Offshore wind energy (OWE) represents a key technology for achieving a sustainable energy transition. However, offshore wind farms (OWFs) can impact the environment via installation, operation, maintenance, and decommissioning activities together with the raw materials and energy required for their manufacturing. This study assesses the material and carbon footprint of potential OWF locations in the North Sea for various possible future technology developments.

View Article and Find Full Text PDF

Background: Migratory bats perform seasonal movements between their summer and winter areas. When crossing ecological barriers, like the open sea, they are exposed to an increased mortality risk due to energetically demanding long-distance flights and unexpected inclement weather events. How such barriers affect bat migratory movements is still poorly known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!