Genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma.

Cancer Genet

Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.

Published: April 2021

ALK (Anaplastic lymphoma kinase) fusion proteins are oncogenic and have been seen in various tumors. PPP1CB-ALK fusions are rare but have been reported in a few patients with low- or high-grade gliomas. However, little is known regarding the mechanism of fusion formation and genomic break points of this fusion. We performed genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. The PPP1CB-ALK consists of exons 1-5 of PPP1CB and exons 20-29 of ALK. The genomic translocation breakpoints were determined by real-time quantitative PCR (RT-qPCR) and Sanger sequencing of genomic DNA. Next generation sequencing, RT-qPCR and fluorescence in situ hybridization analyses demonstrated PPP1CB-ALK amplification. Copy number analyses of genes between PPP1CB and ALK using RT-qPCR suggest that the PPP1CB-ALK is likely the result of local chromothripsis followed by episomal amplification. Transcriptome sequencing demonstrated high-level SOX2 expression and predicted WNT/β-catenin pathway activation, suggesting possible therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2020.12.005DOI Listing

Publication Analysis

Top Keywords

genomic characterization
8
characterization ppp1cb-alk
8
ppp1cb-alk fusion
8
fusion fusion
8
fusion gene
8
gene amplification
8
amplification congenital
8
congenital glioblastoma
8
fusion
7
ppp1cb-alk
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!