Separation and characterization of liposomes using asymmetric flow field-flow fractionation with online multi-angle light scattering detection.

J Chromatogr A

Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Anexo "Marie Curie", Córdoba E-14071, España. Electronic address:

Published: January 2021

AI Article Synopsis

  • Liposomes, made from phospholipids and cholesterol, were analyzed using a technique called asymmetric flow field-flow fractionation (AF4) combined with a multi-angle light scattering detector (MALS) to determine their size based on how long they take to elute.
  • Different types of liposomes were created for study, including empty liposomes, magnetoliposomes containing iron and gold nanoparticles, and liposomes with long-wavelength fluorophores in their inner cavity.
  • The study established a method for optimizing the separation process and found that three distinct classes of liposomes could be identified, indicating that this methodology is effective for characterizing liposomes based on their contents.

Article Abstract

Liposomes, mainly formed by phospholipids and cholesterol that entrapped different compounds, were separated and characterized using asymmetric flow field-flow fractionation (AF4) coupled with a multi-angle light scattering detector (MALS). AF4 allows the separation of liposomes according to their hydrodynamic size, and the particle size can be estimated directly by their elution time. Besides, different synthesized liposome suspensions of liposomes with different species encapsulated in different places in liposomes were prepared with analytical purposes to be studied. These liposomes were: empty liposomes (e-Ls), magnetoliposomes (MLs) with FeO@AuNPs-C12SH inside the lipid bilayer, and long-wavelength fluorophores encapsulated into the aqueous cavity of liposomes (Ls-LWF). The optimization process of the variables that affect the fractionation has been established. The separation effectiveness has been compared with the results achieved with a photon-correlation spectroscopy analyzer based on dynamic light scattering (DLS) and transmission electron microscopy (TEM), used in self-assembly structures characterization. In all cases, three different classes of liposomes have been obtained; two are commonly appaired in all studied samples, while only a third class is characteristic for each of the liposomes. This mean that the proposed methodology could be used for identifying liposomes according to the encapsulated material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461798DOI Listing

Publication Analysis

Top Keywords

light scattering
12
liposomes
11
asymmetric flow
8
flow field-flow
8
field-flow fractionation
8
multi-angle light
8
separation characterization
4
characterization liposomes
4
liposomes asymmetric
4
fractionation online
4

Similar Publications

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.

View Article and Find Full Text PDF

In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.

View Article and Find Full Text PDF

Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

December 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!