Uranium (U) mining is an aquatic environmental concern because most of these harmful compounds are discharged into freshwater, reaching the saline environment as the final destination of this contaminated water. Carbonates are present in ocean waters and are essential for benthic organisms, however they may influence the U-induced toxicity. Thus, the aim of this study was to compare the toxicity of uranium nitrate (UN) and uranium acetate (UA) in Artemia salina (AS), which is one of the leading representatives of the marine biota. The cultures of AS (instar II) maintained in artificial seawater containing CaCO were exposed for 24 h to different concentrations of U compounds. The results showed that AS were more sensitive to UN (LC ≈ 15 μM) when compared with UA (LC ≈ 245 μM) indicating higher toxicity of this U compound. Calculated U speciation indicated that CaUO(CO) and (UO)2CO(OH) complexes predominated under our experimental conditions. The immobilization/lethality was observed after 9 h of exposure for both U compounds. However, only UN caused a significant decrease (≈40%) in the acetylcholinesterase (AChE) activity when compared with control. In order to observe preliminary toxicity effects, we evaluated oxidative stress parameters, such as catalase (CAT) activity, TBARS formation, radical species (RS) generation and cell membrane injury and/or apoptosis (CMI). In this study, we demonstrate that U compounds caused a significant decrease in CAT activity. Similarly, we also observed that UN increased TBARS levels in AS at concentrations 5 times lower than AU (10 μM and 50 μM, respectively). Furthermore, RS generation and CMI were enhanced only on AS treated with UN. Overall, the effects observed here were remarkably significant in AS exposed to UN when compared with AU. In this study, we showed different profiles of toxicity for both U compounds, contributing significantly to the current and scarce understanding of the aquatic ecotoxicity of this heavy metal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2020.105221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!