Theaflavin ameliorates renal ischemia/reperfusion injury by activating the Nrf2 signalling pathway in vivo and in vitro.

Biomed Pharmacother

Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:

Published: February 2021

Studies have demonstrated that oxidaive stress-induced apoptosis may be the main pathogenic mechanism of renal ischemia/reperfusion (I/R) injury. Theaflavin, a polyphenolic compound extracted from black tea, has been proven to exert strong antioxidant biological function. The objective of the present study was to investigate the potential role of theaflavin on renal I/R injury and its potential molecular mechanism both in vitro and in vivo. C57/BL6 J mice were used to create a model of I/R injury wherein mice were ligated with bilateral renal pedicles for 45 min, and then reperfused for 24 h. A hypoxia/reoxygenation (H/R) model of TCMK-1 cells was used to simulate I/R in vitro. Theaflavin were administered to the treatment group first and then established the model. Kidney Injury Molecule-1 (KIM-1), serum creatinine, urea nitrogen, and 24-h urinary protein levels were evaluated and changes in mitochondrial membrane potential and the ultrastructure of mitochondria were observed. Cell viability, oxidative stress damage, and apoptosis were assessed. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes HO-1 and NQO1 were evaluated. Our results revealed that pretreatment with theaflavin significantly inhibited I/R- and H/R-induced renal injury and cell apoptosis. Theaflavin improved mitochondrial dysfunction by attenuating mitochondrial damage and promoting mitochondrial membrane potential. Theaflavin pretreatment significantly reduced malondialdehyde content, while enhancing superoxide dismutase activity in vivo and in vitro. It also reduced oxidative stress and apoptosis mainly by upregulating Nrf2 and its downstream targets in TCMK-1 cells. Thus, theaflavin exerted a protective effect against renal I/R injury by inhibiting oxidative stress and apoptosis via activation of the Nrf2-NQO1/HO-1 pathway as well as correcting mitochondrial dysfunction, thereby presenting its potential as a clinical therapeutic in cases of acute kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.111097DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
oxidative stress
12
theaflavin
8
renal ischemia/reperfusion
8
injury
8
vivo vitro
8
renal i/r
8
tcmk-1 cells
8
kidney injury
8
mitochondrial membrane
8

Similar Publications

Neutrophil Elastase as A Potential Target in Ischemia-Reperfusion Injury.

Curr Vasc Pharmacol

January 2025

Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

Neutrophil elastase (NE), a major protease in neutrophils, is important in promoting inflammation and multiple pathological processes. While NE is released abundantly in ischemiareperfusion (I/R) injury, the intricate relationship between NE and I/R injury remains unclear. We examine several aspects of how NE is involved in I/R injury.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

5-(3-(-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1-pyrrole-2-carboxylic acid as a Keap1-Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment.

RSC Adv

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China

The Keap1 (Kelch-like ECH-Associating Protein 1)-Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2)-ARE (Antioxidant Response Element) signaling pathway plays a crucial role in the oxidative stress response and has been linked to the development and progression of various diseases. Its influence on cerebral ischemia/reperfusion (I/R) injury has garnered significant attention. In our study, we investigated the effect of compound 2, a non-covalent inhibitor of the Keap1-Nrf2 interaction, which was previously discovered by our research group.

View Article and Find Full Text PDF

Background: Hepatic ischemia/reperfusion (I/R) injury (HIRI) is an intrinsic phenomenon observed in the process of various liver surgeries. Unfortunately, there are currently few options available to prevent HIRI. Accordingly, we aim to explore the role and key downstream effects of B-cell lymphoma 6 (BCL6) in hepatic I/R (HIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!