Obesity has emerged as a leading cause of death in the last few decades, mainly due to associated cardiovascular diseases. Obesity, inflammation, and insulin resistance are strongly interlinked. Lisofylline (LSF), an anti-inflammatory agent, demonstrated protection against type 1 diabetes, as well as reduced obesity-induced insulin resistance and adipose tissue inflammation. However, its role in mitigating cardiac inflammation associated with obesity is not well studied. Mice were divided into 4 groups; the first group was fed regular chow diet, the second was fed regular chow diet and treated with LSF, the third was fed high fat diet (HFD), and the fourth was fed HFD and treated with LSF. Cardiac inflammation was interrogated via expression levels of TNF α, interleukins 6 and 10, phosphorylated STAT4 and lipoxygenases 12 and 12/15. Apoptosis and expression of the survival gene, AMPK, were also evaluated. We observed that LSF alleviated obesity-induced cardiac injury indirectly by improving both pancreatic β-cell function and insulin sensitivity, as well as, directly via upregulation of cardiac AMPK expression and downregulation of cardiac inflammation and apoptosis. LSF may represent an effective therapy targeting obesity-induced metabolic and cardiovascular complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2020.155398 | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
Nephrol Dial Transplant
January 2025
Clinica Medica, University Milano-Bicocca and University of Milano-Bicocca, Milan, Italy.
The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!