Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2 infected mice, but infected ST2 mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2 infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2 mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2 mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2020.155390 | DOI Listing |
ASN Neuro
January 2025
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
PLoS Pathog
January 2025
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!