Reactive oxygen species (ROS) are highly reactive and directly attack surrounding biomolecules to deteriorate cellular and tissue functions. Meanwhile, ROS also serve as signaling mediators to upregulate pro-inflammatory cytokine expression via activation of the nuclear factor kappa B signaling pathway, and the increased pro-inflammatory cytokines trigger respiratory burst of inflammatory cells that further accelerates ROS production in the inflamed tissue. Such crosstalk between ROS and inflammatory responses leads to a chain reaction of negativity, and cause progression of several chronic pathologies. Since molecular hydrogen is known to preferentially remove cytotoxic hydroxyl radicals and peroxynitrites, and to prevent cell and tissue damage, we here examined whether electrolyzed hydrogen water (EHW) enriched with molecular hydrogen and reactive hydrogen storing platinum nanoparticles dissolved from an electrode could alleviate oxidative stress and inflammation induced by continuous stress challenges. Five-day continuous stress loading to rats elevated reactive oxygen metabolites-derived compounds (d-ROMs), interleukin (IL)-1β, and adrenocorticotropic hormone (ACTH) levels and decreased the biological antioxidant potential (BAP) level. Drinking EHW during 5-day continuous stress loading significantly alleviated all of these changes. The results suggest that EHW could suppress stress-response-associated oxidative stress and IL-1β level elevation in vivo, and that drinking of EHW is effective for controlling stress responses via its antioxidant potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.12.035 | DOI Listing |
Artif Organs
January 2025
BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.
The continuous monitoring of oxygen saturation (SpO) and respiratory rates (RRs) are major clinical issues in many cardio-respiratory diseases and have been of tremendous importance during the COVID-19 pandemic. The early detection of hypoxemia was crucial since it precedes significant complications, and SpO follow-up allowed early hospital discharge in patients needing oxygen therapy. Nevertheless, fingertip devices showed some practical limitations.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan.
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary.
The red blood cell (RBC) membrane is unique and crucial for maintaining structural-functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The major aim of this study was to follow the consequences of a secondary stressor, like fungal infection, on the already compromised RBC populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!