Porous Fe-Mn biodegradable scaffolds fabricated by 3D printing are considered as a promising alternative biomaterial for repairing load-bearing bone defects. However, the mechanical adaptability, the thoughtful in vitro biocompatibility and especially the long-term in vivo osseointegration and biodegradation performances have not been investigated to date. Herein, the porous Fe-30Mn biodegradable scaffolds fabricated by selective laser melting (SLM) had the adjustable elastic modulus ranging from 10.04 GPa to 14.88 GPa by regulating the porosity from 37.89% to 47.17%. In vitro indirect and direct cytotoxicity as well as cell adhesion experiments demonstrated biocompatibility and a large number of cells with stretched filopodia adhered to the scaffolds. 48 weeks in vivo experiments showed that the scaffolds had no harm to liver and kidney, and exhibited long-term in vivo osseointegration performance. Volumes of the scaffolds decreased by 10.1-20.9%, and the retrieved scaffolds showed decreased elastic modulus (decreased by 34.1-42.3%) and yield strength (decreased by 15.8-23.3%) after the 48 weeks in vivo degradation. The Fe-30Mn-femoral condyle complex maintained the same level of stiffness as intact controls during 48 weeks. In summary, the porous Fe-30Mn biodegradable scaffolds fabricated by SLM could be a reliable and practical alternative for repairing load-bearing bone defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.12.028 | DOI Listing |
Macromol Biosci
January 2025
Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.
Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.
Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.
Rev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Once multicellularity was thriving, a key development involved the emergence of epithelial layers that separated "inside" from "outside". Most epithelia then generate their own transepithelial electrical signals. So electrical forces were instrumental in the development of epithelial tissues, which themselves generate further electrical signals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
Tylosema esculentum (marama bean), an underutilized orphan legume native to southern Africa, holds significant potential for domestication as a rescue crop to enhance local food security. Well-adapted to harsh desert environments, it offers valuable insights into plant resilience to extreme drought and high temperatures. In this study, k-mer analysis indicated marama as an ancient allotetraploid legume.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!