The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (∼80%), RNA (∼10%), and a number of different proteins (∼10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840413 | PMC |
http://dx.doi.org/10.1016/j.bpj.2020.12.006 | DOI Listing |
Curr Opin Neurol
February 2025
High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, Russell Square House, Bloomsbury, London, UK.
Purpose Of Review: Though simple in its fundamental mechanism - a critical disruption of local blood supply - stroke is complicated by the intricate nature of the neural substrate, the neurovascular architecture, and their complex interactions in generating its clinical manifestations. This complexity is adequately described by high-resolution imaging with sensitivity not only to parenchymal macrostructure but also microstructure and functional tissue properties, in conjunction with detailed characterization of vascular topology and dynamics. Such descriptive richness mandates models of commensurate complexity only artificial intelligence could plausibly deliver, if we are to achieve the goal of individually precise, personalized care.
View Article and Find Full Text PDFEnergy Build
February 2025
Department of Architectural Engineering, Penn State University, University Park, PA, USA, 16803.
Growing research on the non-visual impacts of light underscores the importance of architectural glazing systems in managing transmitted shortwave solar light and shaping indoor circadian light, vital for enhancing well-being. This study, conducted in two phases, evaluates the effectiveness of existing window properties in predicting their contribution to circadian lighting. Initially, a decision tree analysis assessed these properties and revealed that although traditional glazing metrics are not entirely accurate for circadian performance estimations, they can still be effective when supplemented with specific thresholds as rapid tools for selecting windows optimized for circadian health.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.
View Article and Find Full Text PDFFront Plant Sci
December 2024
R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China.
Tin-based sulfides, possessing a unique layered structure and a high theoretical capacity, stand as highly prospective contenders for anode materials in lithium-ion batteries (LIBs). Nevertheless, the pronounced volume expansion that occurs during lithium storage and poor capacity retention have limited its progress toward commercialization. Herein, we designed and prepared a SnS/RGO composite with a three-dimensional porous structure by sulfurizing the SnO(OH)/GO precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!