Premise: Nucleic acid integrity can be compromised under many abiotic stresses. To date, however, few studies have considered whether nucleic acid damage and damage repair play a role in cold-stress adaptation. A further insufficiently explored question concerns how age affects cold stress adaptation among mature perennials. As a plant ages, the optimal trade-off between growth and stress tolerance may shift.

Methods: Oxidative damage to RNA and expression of genes involved in DNA repair were compared in multiple mature cohorts of Thinopyrum intermedium (an emerging perennial cereal) and in wheat and barley under intermittent freezing stress and under nonfreezing conditions. Activity of glutathione peroxidase (GPX) and four other antioxidative enzymes was also measured under these conditions. DNA repair genes included photolyases involved in repairing ultraviolet-induced damage and two genes involved in repairing oxidatively induced damage (ERCC1, RAD23).

Results: Freezing stress was accompanied by large increases in photolyase expression and ERCC1 expression (in wheat and Thinopyrum) and in GPX and GR activity (particularly in Thinopyrum). This is the first report of DNA photolyases being overexpressed under freezing stress. Older Thinopyrum had lower photolyase expression and less freezing-induced overexpression of ERCC1. Younger Thinopyrum plants sustained more oxidative damage to RNA.

Conclusions: Overexpression of DNA repair genes is an important aspect of cold acclimation. When comparing adult cohorts, aging was associated with changes in the freezing stress response, but not with overall increases or decreases in stress tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1584DOI Listing

Publication Analysis

Top Keywords

freezing stress
20
dna repair
16
nucleic acid
12
acid damage
8
stress
8
thinopyrum intermedium
8
stress tolerance
8
oxidative damage
8
genes involved
8
repair genes
8

Similar Publications

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as . Employing in vitro approaches, we demonstrate DPL5's ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of , and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL.

View Article and Find Full Text PDF

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM).

View Article and Find Full Text PDF

(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!