Biophysical cues synergize with biochemical cues to drive differentiation of pluripotent stem cells through specific phenotypic trajectory. Tools to manipulate the cell biophysical environment and identify the influence of specific environment perturbation in the presence of combinatorial inputs will be critical to control the development trajectory. Here we describe the procedure to perturb biophysical environment of pluripotent stem cells while maintaining them in 3D culture configuration. We also discuss a high-throughput platform for combinatorial perturbation of the cell microenvironment, and detail a statistical procedure to extract dominant environmental influences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1174-6_6 | DOI Listing |
J Control Release
January 2025
Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:
Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.
View Article and Find Full Text PDFNeuroimage
January 2025
Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom. Electronic address:
Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!