Objective: The aim is to develop a novel noninvasive prenatal testing (NIPT) method that simultaneously performs fetal aneuploidy screening and the detection of de novo and paternally derived mutations.
Methods: A total of 68 pregnancies, including 26 normal pregnancies, 7 cases with fetal aneuploidies, 7 cases with fetal achondroplasia or thanatophoric dysplasia, 18 cases with fetal skeletal abnormalities, and 10 cases with β-thalassemia high risk were recruited. Plasma cell-free DNA was amplified by Targeted And Genome-wide simultaneous sequencing (TAGs-seq) to generate around 99% of total reads covering the whole-genome region and around 1% covering the target genes. The reads on the whole-genome region were analyzed for fetal aneuploidy using a binary hypothesis T-score and the reads on target genes were analyzed for point mutations by calculating the minor allelic frequency of loci on FGFR3 and HBB. TAGs-seq results were compared with conventional NIPT and diagnostic results.
Results: In each sample, TAGs-seq generated 44.7-54 million sequencing reads covering the whole-genome region of 0.1-3× and the target genes of >1000×depth. All cases of fetal aneuploidy and de novo mutations of achondroplasia/thanatophoric dysplasia were identified with high sensitivities and specificities except for one false-negative paternal mutation of β-thalassemia.
Conclusions: TAGs-seq is a novel NIPT method that combines the fetal aneuploidy screening and the detection of de novo FGFR3 mutations and paternal HBB mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048498 | PMC |
http://dx.doi.org/10.1002/pd.5879 | DOI Listing |
Medicine (Baltimore)
January 2025
Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin, Guangxi, China.
Rationale: This study investigates the genetic cause of primary infertility and short stature in a woman, focusing on maternal X chromosome pericentric inversion and its impact on offspring genetic outcomes, including deletions at Xp22.33 and Xp22.33p11.
View Article and Find Full Text PDFCureus
December 2024
Medicine, College of Medicine, Taibah University, Medina, SAU.
Preimplantation genetic diagnosis (PGD) is provided by majority of reproductive clinics in the United States (US), and PGD is used in many in vitro fertilization (IVF) procedures every year. PGD is extensively used to screen for certain genetic abnormalities and aneuploidy in individuals undergoing IVF. Genetic disorders are very prevalent in Saudi Arabia.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
Objective: To explore the clinical phenotype, pregnancy outcome and follow-up of fetuses with 15q11.2BP1-BP2 microdeletions in order to provide a basis for prenatal and reproductive consultation.
Methods: From March 2019 to December 2023, 20 fetuses who were diagnosed with 15q11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222000, China.
Objective: To explore the clinical significance of trisomy 7 signaled by non-invasive prenatal testing (NIPT).
Methods: Pregnant women with high risk for trisomy 7 by NIPT from January 2017 to December 2023 were selected as the study subjects, and the results of prenatal diagnosis and follow-up were analyzed. Literature related to pregnant women with a high risk for trisomy 7 by NIPT from January 2016 to July 2024 was retrieved from China Biomedical Literature Database, Wanfang Database, China National Knowledge Infrastructure and PubMed database.
Curr Opin Obstet Gynecol
December 2024
University of North Carolina School of Medicine, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Chapel Hill, North Carolina, USA.
Purpose Of Review: Despite the availability of Rh(D) immune globulin (RhIg) to prevent alloimmunization in Rh(D)-negative pregnant patients, anti-Rh(D) alloimmunization remains a prevalent cause of hemolytic disease of the fetus and newborn (HDFN). Recent RhIg shortages have caused clinicians and professional societies to identify methods to prioritize RhIg administration. New cell-free DNA (cfDNA) tests to predict fetal red blood cell antigen genotypes have been proposed as an option to prioritize the administration of RhIg to Rh(D)-negative pregnant people.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!