Dielectrophoresis is a robust approach for the manipulation and separation of (bio)particles using microfluidic platforms. We developed a dielectrophoretic corral trap in a microfluidic device that utilizes negative dielectrophoresis to capture single spherical polystyrene particles. Circular-shaped micron-size traps were employed inside the device and the three-dimensional trap stiffness (restoring trapping force from equilibrium trapping location) was analyzed using 4.42 μm particles and 1 MHz of an alternating electric field from 6 V to 10 V . The trap stiffness increased exponentially in the x- and y-direction, and linearly in the z-direction. Image analysis of the trapped particle movements revealed that the trap stiffness is increased 608.4, 539.3, and 79.7% by increasing the voltage from 6 V to 10 V in the x-, y-, and z-direction, respectively. The trap stiffness calculated from a finite element simulation of the device confirmed the experimental results. This analysis provides important insights to predict the trapping location, strength of the trapping, and optimum geometry for single particle trapping and its applications such as single-molecule analysis and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202000222DOI Listing

Publication Analysis

Top Keywords

trap stiffness
20
three-dimensional trap
8
dielectrophoretic corral
8
corral trap
8
trapping location
8
stiffness increased
8
trap
7
stiffness
5
trapping
5
quantitative analysis
4

Similar Publications

Optothermal trapping of microparticles near an absorbing reflective film with an annular beam.

Rev Sci Instrum

December 2024

Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.

Article Synopsis
  • Optothermal manipulation technologies use light-based temperature gradients to trap and move microparticles, demonstrating potential applications in various fields.
  • The study explores the optical force of an annular beam on a reflective surface and finds that it cannot effectively trap particles in that scenario.
  • By shaping a Gaussian beam with axicons, researchers generate an annular beam that heats a gold film, creating a successful optothermal trap that binds particles with significant trapping stiffness measured at 8.1 ± 2.9 fN/μm at 100 mW laser power.
View Article and Find Full Text PDF

We compute the connected two-time correlator of the maximum M_{N}(t) of N independent Gaussian stochastic processes (GSPs) characterized by a common correlation coefficient ρ that depends on the two times t_{1} and t_{2}. We show analytically that this correlator, for fixed times t_{1} and t_{2}, decays for large N as a power law N^{-γ} (with logarithmic corrections) with a decorrelation exponent γ=(1-ρ)/(1+ρ) that depends only on ρ, but otherwise is universal for any GSP. We study several examples of physical processes including the fractional Brownian motion (fBm) with Hurst exponent H and the Ornstein-Uhlenbeck process (OUP).

View Article and Find Full Text PDF
Article Synopsis
  • Mechanical forces play a crucial role in regulating cellular activities, and understanding these forces is key to discovering fundamental biological mechanisms.
  • Researchers developed a new microprobe that can measure biological forces in living cells at the nanonewton level, enhancing experimental precision significantly.
  • Using this advanced probe, they measured the elasticity modulus of HeLa cells at 1.27 ± 0.3 kPa, paving the way for more detailed studies of 3D cellular mechanics.
View Article and Find Full Text PDF

Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23, all of which are stabilized by Ca binding.

View Article and Find Full Text PDF

Dietary supplementation with calcitriol or quercetin improved eggshell and bone quality by modulating calcium metabolism.

Anim Nutr

September 2024

Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

This study was aimed to investigate the effects of dietary calcitriol or quercetin supplementation on eggshell and bone quality of laying hens. In trial 1, 72 Hy-Line Brown layers (80-week-old) with weak-shelled strength (25 to 30 N) were assigned into 4 dietary treatments with 6 replicates of 3 birds and fed a basal diet (4% calcium level) or basal diets supplemented with 0.5% calcium, 5 μg/kg calcitriol or 500 mg/kg quercetin for 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!