Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767124PMC
http://dx.doi.org/10.3390/nano10122531DOI Listing

Publication Analysis

Top Keywords

periodic surface
12
thin films
12
nih 3t3
8
laser-induced periodic
8
multilayer thin
8
surface
6
multilayer
5
cell
5
response nih
4
3t3 fibroblast
4

Similar Publications

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Statement Of Problem: The impact of free gingival graft (FGG) dimensions on the postsurgical shrinkage of keratinized tissue width (KTW) and surface area in posterior implant sites is unclear. Standardized assessments of how graft dimensions influence KTW and surface area shrinkage rates over a 6-month period after FGG are lacking.

Purpose: The purpose of this prospective parallel cohort study was to examine the impact of the graft dimensions on the postsurgical shrinkage of KTW and surface area over a 6-month follow-up period after FGG in the posterior regions.

View Article and Find Full Text PDF

Graded porous scaffold mediates internal fluidic environment for 3D in vitro mechanobiology.

Comput Biol Med

January 2025

Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom. Electronic address:

Most cell types are mechanosensitive, their activities such as differentiation, proliferation and apoptosis, can be influenced by the mechanical environment through mechanical stimulation. In three dimensional (3D) mechanobiological in vitro studies, the porous structure of scaffold controls the local mechanical environment that applied to cells. Many previous studies have focused on the topological design of homogeneous scaffold struts.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Mangrove flourishing/deterioration under the control of the Indian Summer Monsoon over the past ∼3,195 years in Phang Nga Province, Thailand.

Mar Environ Res

January 2025

Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Mangrove wetlands are strategic locations for mitigating climate changes. In order to address the harm of rapid climate change to mangrove ecosystems, it is necessary to scientifically predict the fate of mangrove ecosystems, which can be achieved by reconstructing the development history of mangrove forests. This study analyzes the contribution of mangrove-derived organic matter (CMOM) from sediment core F in Phang Nga Province, Thailand by using the endmember mixing model based on stable organic carbon isotopes (δC) and C/N (molar) ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!