The fabrication of hollow channels surrounded by gold nanoparticles in poly(ethylene glycol) diacrylate (PEGDA) is demonstrated. The absorption spectra show that gold nanoparticles were formed at the periphery of the focus by reduction of gold ions. The microscope observation and Raman spectroscopy analyses indicate that the center of the channels were void of PEGDA, which can be attributed to the femtosecond laser-induced degradation of the hydrogel. Since both the hydrogel and gold nanoparticles are biocompatible, this technique of fabricating hollow channels surrounded by gold nanoparticles is promising for tissue engineering, drug screening, and lab-on-a-chip devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766102 | PMC |
http://dx.doi.org/10.3390/nano10122529 | DOI Listing |
Anal Bioanal Chem
January 2025
School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China.
Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.
View Article and Find Full Text PDFACS Sens
January 2025
Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.
The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
Background: Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!