Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765667 | PMC |
http://dx.doi.org/10.3390/ijerph17249424 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, West Virginia, USA.
IgE acts primarily via the high affinity IgE receptor (FcεRI) and is central to immediate hypersensitivity reactions (anaphylaxis). However, IgE is also important in the development of chronic hypersensitivity reactions (allergy). In the cardiovascular system, numerous clinical studies have investigated serum IgE levels, mainly in the context of myocardial infarction, and have established a clear association between IgE and ischemic cardiac events.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Background: Transcatheter aortic valve replacement (TAVR) has revolutionized the management of aortic stenosis and has become the standard of care across a broad spectrum of patients with aortic stenosis. However, it is still associated with high incidence of conduction abnormalities, particularly new left bundle branch block (LBBB). Management of these patients remains a challenge.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.
Background: Atrial fibrillation (AF) is the most common arrhythmia worldwide. Data regarding 30-day readmission following index admission for AF in the developing world are poorly described.
Objectives: The study aimed to assess the rate, predictors, and trends of 30-day readmission after index admission for AF in Syria.
Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFThe heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!