Air-coupled ultrasonic probes require a special design approach and handling due to the significant mismatch to the air. Outer matching layers have to be soft so can be easily damaged and excitation voltages might cause the degradation of electrodes or bonding between the layers. Integrity inspection is desired during design, manufacturing, and exploitation. Spatial distribution of a transduction efficiency over piezoelement surface is proposed as a convenient means for the air-coupled probe integrity inspection. Focused transducer of similar center frequency is used to scan the surface of the inspected probe. However, such approach creates a challenge, i.e., area of the scanning beam is much smaller than the total receiving area of the inspected probe, therefore, contrast and imaging resolution are significantly degraded. Masking aperture made from cardboard and felt, placed at the focal point was proposed as solution. Far-range sidelobes were suppressed down to the noise floor (-50 dB) and the near-range sidelobes were reduced down to -17 dB. The proposed modification allows to use a similar frequency focused transducer. Probe integrity inspection can be carried out at significantly enhanced contrast and lateral resolution. Natural and artificial defects can be detected by the use of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765493PMC
http://dx.doi.org/10.3390/s20247196DOI Listing

Publication Analysis

Top Keywords

probe integrity
12
focused transducer
12
integrity inspection
12
air-coupled ultrasonic
8
inspected probe
8
probe
5
ultrasonic probe
4
integrity
4
integrity test
4
test focused
4

Similar Publications

Probing and imaging phospholipid dynamics in live cells.

Life Metab

August 2024

State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels.

View Article and Find Full Text PDF

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF

Ensuring boar sperm quality before insemination is crucial for maximizing field fertility and efficient pig production. The computer-assisted sperm analysis (CASA) and fluorescence probes combined with flow cytometry (FC) are commonly used techniques for evaluating sperm kinematics and functions, closely related to animal fertility. However, their high cost and complex operations make it challenging to apply them in laboratories or pig breeding farms with limited resources.

View Article and Find Full Text PDF

In order to solve the problem of logging calibration without a free pipe in the process of acoustic variable density logging and the subjective problem of the free pipe calibration method, this paper studies an attenuation rate calibration method based on acoustic variable density logging. Using the developed acoustic wave probe response relationship device and the acoustic wave probe calibration device, the response consistency of the receiving probe of the acoustic wave instrument and the frequency of the transmitting probe can be calibrated in the laboratory, and the response consistency and frequency calibration coefficient can be obtained. Through this coefficient, the acoustic wave attenuation rate can be derived.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!