Background: Activity of the two major stress systems, the hypothalamic-pituitary-adrenal (HPA) and the sympathetic-adrenal-medullary (SAM) axis, has already been shown to be modulated by different compounds that bind to the central benzodiazepine receptor. Less is known about ligands that modulate the peripheral benzodiazepine receptor - meanwhile known as the translocator protein 18 kDa (TSPO) - which constitute promising candidates in the search of novel anxiolytics. To close this gap, the present study compared the effects of the benzodiazepine alprazolam and the TSPO ligand etifoxine on responses of the HPA and SAM axes to the Trier Social Stress Test, a standardized paradigm to induce acute psychosocial stress in humans, performed in Virtual Reality (VR-TSST).
Methods: Sixty healthy males, aged between 18 and 55 years, were randomly assigned to receive either a daily dose of 1.5 mg alprazolam, 150 mg etifoxine, or placebo over five days. On the last day of intake, they were exposed to the VR-TSST. We assessed changes of salivary cortisol, allopregnanolone, (nor-) epinephrine in serum, TSPO expression in platelets as well as heart rate (HR), skin conductance level (SCL) and self-reports in response to the stress task. Repeated measures ANOVAs were conducted to examine treatment effects on these stress response variables during the course of VR-TSST.
Results: The response of salivary cortisol to the VR-TSST was significantly blunted in participants pre-treated with alprazolam but was not affected by etifoxine. While levels of allopregnanolone, epinephrine and norepinephrine increased in response to stress, TSPO expression decreased. None of those endocrine stress markers was affected by the active treatments, whereas TSPO expression increased after etifoxine administration over all study days. There were no effects of the two anxiolytics on HR, SCL or any self-report measurement.
Conclusion: The current study confirmed the attenuating effects of benzodiazepines on stress-induced HPA axis activity but did not reveal a comparable effect of the TSPO ligand etifoxine. The long-term consequences of a pharmacologically blunted response of the HPA axis to an acute stressor should be further elucidated. Due to the missing effects of etifoxine on stress-related parameters in our sample of healthy subjects, it might be concluded that the therapeutic effects of this TSPO ligand are restricted to stronger or pathological stress responses, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2020.105100 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China. Electronic address:
Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are significant burdens on global health. Remimazolam (REM), a novel sedative, has shown potential in its anti-inflammatory effects. However, a lack of evidence currently hinders our ability to determine if REM can improve ALI/ARDS.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany. Electronic address:
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy. Electronic address:
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
Excess dietary sodium can accumulate in brain and adversely affect human health. We have confirmed in previous studies that high salt can induce activation of astrocyte manifested by the secretion of various inflammatory factors. In order to further explore the effect of high salt on the internal cell metabolism of astrocytes, RNA sequencing was performed on astrocytes under high salt environment, which indicated the oxidative phosphorylation and glycolysis pathways of astrocytes were downregulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!