Combined sediment desorption and bioconcentration model to predict levels of dioxin-like chemicals in fish.

Sci Total Environ

Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai, China. Electronic address:

Published: March 2021

Flooding and other sediment disturbances can lead to increases in sediment resuspension. In this context, it is of central importance to understand the kinetics of release from these sediments and the uptake of pollutants, such as polychlorinated biphenyls (PCBs) and polychlorinated dioxins and furans (PCDD/Fs), into aquatic organisms. In the present study, we parameterized a sediment desorption model based on experimentally determined rapidly-desorbing fractions of dioxin-like chemicals (DLCs). We coupled this desorption model with a physiologically-based toxicokinetic model for rainbow trout. This combined model was used to predict DLC concentrations in the muscle of exposed fish. The performance of this model was evaluated using a previously published dataset on DLC uptake from sediment suspensions during simulated re-suspension events. Predictions generally differed less than 10-fold from measured values, and the model showed a good global coefficient of determination (R) of 0.95. The root mean squared error (RMSE) for PCBs was 0.31 log units and 0.53 log units for PCDD/Fs. The results of our study demonstrate that the prediction of bioconcentration and related risk to fish resulting from sediment resuspension can be accurately predicted using coupled desorption and toxicokinetic models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143891DOI Listing

Publication Analysis

Top Keywords

sediment desorption
8
model predict
8
dioxin-like chemicals
8
sediment resuspension
8
desorption model
8
coupled desorption
8
log units
8
model
7
sediment
5
combined sediment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!