Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Application of machine-learning methods to assess the batch adsorption of malachite green (MG) dye on chitosan/polyvinyl alcohol/zeolite imidazolate frameworks membrane adsorbents (CPZ) was investigated in this study. Our previous research results proved the suitability of the CPZ membranes for wastewater decoloring. In the current work, the residence time was combined with the other operational variables i.e., pH, initial dye concentration, and adsorbent dose (AD), to obtain the possible interactions involved in nonequilibrium adsorption. Two well-known soft-computing approaches, multi-layer perceptron adaptive neural network (MLP-ANN) and adaptive neural fuzzy inference system (ANFIS), were selected among different machine learning alternatives and then, comprehensively compared with each other considering reliability and accuracy for a 60 number of runs. The ANFIS structure with nine centers of clusters could predict the adsorption performance better than the ANN approach. Root mean square error (RMSE) and R-square were obtained 0.01822 and 0.9958 for the test data, respectively. The interpretability test resulted a linear trend predicted by the model and disclosed that the maximum value of the removal efficiency (99.5%) could be obtained when the amount of the inputs set to the upper limit. Lastly, the sensitivity analysis uncovered that the residence time has a decisive effect (relevancy factor > 80%) on the removal efficiency. According to the results, ANFIS is an effective and reliable tool to optimize and intensify the membrane adsorption process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!