Phase-amplitude coupling (PAC) has been hypothesized to coordinate cross-frequency interactions of neuronal activity in the brain. However, little is known about the distribution of PAC across the human brain and the frequencies involved. Furthermore, it remains unclear to what extent PAC may reflect spurious cross-frequency coupling induced by physiological artifacts or rhythmic non-sinusoidal signals with higher harmonics. Here, we combined MEG, source-reconstruction and different measures of cross-frequency coupling to systematically characterize local PAC across the resting human brain. We show that cross-frequency measures of phase-amplitude, phase-phase, and amplitude-amplitude coupling are all sensitive to signals with higher harmonics. In conjunction, these measures allow to distinguish harmonic and non-harmonic PAC. Based on these insights, we found no evidence for non-harmonic local PAC in resting-state MEG. Instead, we found cortically and spectrally wide-spread PAC driven by harmonic signals. Furthermore, we show how physiological artifacts and spectral leakage cause spurious PAC across wide frequency ranges. Our results clarify how different measures of cross-frequency interactions can be combined to characterize PAC, and cast doubt on the presence of prominent non-harmonic phase-amplitude coupling in human resting-state MEG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896041 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2020.117648 | DOI Listing |
Neurocrit Care
January 2025
Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.
J Pineal Res
January 2025
Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
Light environment in the Arctic differs widely with the seasons. Studies of relationships between objectively measured circadian phase and amplitude of light exposure and melatonin in community-dwelling Arctic residents are lacking. This investigation combines cross-sectional (n = 24-62) and longitudinal (n = 13-27) data from week-long actigraphy (with light sensor), 24-h salivary melatonin profiles, and proxies of metabolic health.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
Unlabelled: Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses.
View Article and Find Full Text PDFBrain Res
December 2024
Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India. Electronic address:
Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!