Adsorption of sulfonamides to marine diatoms and arthropods.

Environ Toxicol Pharmacol

Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, 790-8577, Japan. Electronic address:

Published: February 2021

Sulfonamides are frequently detected in the environment, where these compounds adsorb to soil particles and are retained in the environment. However, adsorption of sulfonamides to planktonic particles in the sea is not known. Here we demonstrate that sulfonamides adsorb to a diatom (Chaetoceros) and an arthropod (Artemia), albeit at low levels, under laboratory conditions. In both plankton, sulfamethazine (SMT) was more readily adsorbed than was sulfamethoxazole (SMX). The adsorption occurred quickly and the concentration on the plankton was stable for at least 24 h (Chaetoceros) or 5 h (Artemia). These data suggest that marine plankton may retain sulfonamides, although the adsorbed concentration per cell or individual is not high.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2020.103557DOI Listing

Publication Analysis

Top Keywords

adsorption sulfonamides
8
sulfonamides marine
4
marine diatoms
4
diatoms arthropods
4
sulfonamides
4
arthropods sulfonamides
4
sulfonamides frequently
4
frequently detected
4
detected environment
4
environment compounds
4

Similar Publications

[Sorption and Transport of Antibiotics in Manured Upland Agricultural Soils].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Sorption and transport are important environmental behaviors of antibiotics in soils and can determine the fate of antibiotics in environments; however, limited relevant studies have been conducted on long-term manured soils. In this study, batch and repacked soil column experiments were conducted to examine the sorption and transport behavior of four veterinary antibiotics, including sulfamethazine (SMT), florfenicol (FFC), doxycycline (DOX), and enrofloxacin (ENR), in red soils, yellow soils, and calcareous soils with long-term amendment of chicken or pig manure collected in Zhejiang Province. The results showed that the sorption isothermal data of the four target antibiotics all conformed well to the linear and Freundlich models.

View Article and Find Full Text PDF

The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.

View Article and Find Full Text PDF

Synthesis of porous carbon xerogel adsorbents with tailored hierarchical porosity and morphology for the selective removal of sulfamethoxazole from water.

Environ Sci Pollut Res Int

December 2024

Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain.

Article Synopsis
  • Pellet-type carbon xerogel adsorbents (CXCs) were created using a sol-gel process with resorcinol, formaldehyde, and CsCO as a catalyst, aimed at removing the pollutant sulfamethoxazole (SMX) from water.
  • The different R/Cs ratios used (100, 500, 1000, 2000) produced CXCs with varying porous structures; notably, CXCs100 had the highest adsorption capacity of 87.8 mg/g, but this capacity decreased with higher R/Cs ratios due to reduced pore volume.
  • CXCs500 was identified as the most efficient adsorbent with a good balance of adsorption capacity (72.0 mg/g)
View Article and Find Full Text PDF

Selective adsorption-photocatalytic synergistic breakdown of sulfamethazine in milk using loaded molecularly imprinted AgPO/TiO films.

Food Chem

March 2025

College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China. Electronic address:

To remove antibiotics from milk effectively, molecularly imprinted AgPO/TiO photocatalysts (MAT) were prepared using sulfamethazine (SMZ) as a template and butyl titanate as a functional monomer. Molecularly imprinted AgPO/TiO films (MATs) were constructed using quartz glass tubes as the carrier. The morphology and structure of MAT, the properties and mechanism of degradation of SMZ by MATs, and the nutrition and safety of milk were evaluated.

View Article and Find Full Text PDF

Voltammetric methodology for the quality control and monitoring of sulfamethoxazole removal from water.

Talanta

March 2025

Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, Vigo, 36310, Spain. Electronic address:

Sulfamethoxazole is an antibiotic that is among the drugs most frequently found in waters around the world because of its habitual consumption and its high chemical stability that prevents it from being eliminated from the environment. In this study, an electroanalytical methodology based on differential pulse voltammetry is developed for the analysis of sulfamethoxazole at trace levels in water. After the optimization of the instrumental parameters a linear range from 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!