Temporary effects of neonatal overfeeding on homeostatic control of food intake involve alterations in POMC promoter methylation in male rats.

Mol Cell Endocrinol

Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina. Electronic address:

Published: February 2021

A small litter (SL) model was used to determine how neonatal overfeeding affects the homeostatic control of food intake in male rats at weaning and postnatal day (PND) 90. At PND4, litters were reduced to small (4 pups/dam) or normal (10 pups/dam) litters. At weaning, SL rats showed higher body weight and characteristic features of the metabolic syndrome. Gene expression of pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript, neuropeptide Y (NPY) and leptin and ghrelin (GHSR) receptors were increased and POMC promoter was hypomethylated in arcuate nucleus, indicating that the early development of obesity may involve the GHSR/NPY system and changes in POMC methylation state. At PND90, body weight, metabolic parameters and gene expression were restored; however, POMC methylation state remained altered. This work provides insight into the effects of neonatal overfeeding, showing the importance of developmental plasticity in restoring early changes in central pathways involved in metabolic programming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2020.111123DOI Listing

Publication Analysis

Top Keywords

neonatal overfeeding
12
effects neonatal
8
overfeeding homeostatic
8
homeostatic control
8
control food
8
food intake
8
pomc promoter
8
male rats
8
body weight
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!