miR-31-5p promotes proliferation and inhibits apoptosis of goat hair follicle stem cells by targeting RASA1/MAP3K1 pathway.

Exp Cell Res

Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Published: January 2021

The Yangtze River Delta white goat is a sole goat species that can naturally produce superior-quality brush hair. It's worth to mention that study the developmental mechanism of goat hair follicle stem cells is vital for future breed preservation and molecular breeding. In this study, we successfully isolated hair follicle stem cells from the skin tissue of fetal sheep neck spine, and harvested superior-quality and normal-quality brush hair goat tissue. The expression of miR-31-5p in goat hair follicle stem cells was verified by qPCR and Western blot. The effects of overexpression or inhibition of miR-31-5p on the proliferation and apoptosis of hair follicle stem cells were detected by EdU, CCK-8, flow cytometry, etc. miR-31-5p can significantly improve cell proliferation and inhibit cell apoptosis by targeting RASA1 and upregulating MAP3K1 level, whereas miR-31-5p knockdown led to an opposite effect. These results reveal a miR-31-5p-associated regulatory network between miR-31-5p and RASA1/MAP3K1 during the progression of superiorquality brush hair traits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.112441DOI Listing

Publication Analysis

Top Keywords

hair follicle
20
follicle stem
20
stem cells
20
goat hair
12
brush hair
12
hair
8
mir-31-5p
6
goat
6
follicle
5
stem
5

Similar Publications

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Background: The histological hallmark of male androgenetic alopecia (MAGA) is transformation of terminal follicles into miniaturized secondary-vellus follicles. As the volume of the dermal papilla determines the size of the hair bulb and hair fibre diameter, any treatment induced increase in fibre diameter could be used as a proxy for reversal of hair follicle miniaturization. While clinical trials with minoxidil topical solution in MAGA do not demonstrate increased fibre diameter, vellus-to-terminal reconversion is shown in a humanized mouse model treated with MXL.

View Article and Find Full Text PDF

Although androgenic alopecia is the most prevalent among non-cicatricial alopecia, it still lacks an effective and safe treatment. Dutasteride (DUT) shows promising results in hair regrowth; however, oral DUT intake causes serious sexual adverse events. Hence, we produced liposomes with different bilayer structures and evaluated the capability of such systems in increasing DUT accumulation in the hair follicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!