Isolation and identification of a novel erythromycin-degrading fungus, Curvularia sp. RJJ-5, and its degradation pathway.

FEMS Microbiol Lett

National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China.

Published: January 2021

Erythromycin pollution is an important risk to the ecosystem and human health worldwide. Thus, it is urgent to develop effective approaches to decontaminate erythromycin. In this study, we successfully isolated a novel erythromycin-degrading fungus from an erythromycin-contaminated site. The erythromycin biodegradation characteristics were investigated in mineral salt medium with erythromycin as the sole carbon and energy source. The metabolites of erythromycin degraded by fungus were identified and used to derive the degradation pathway. Based on morphological and phylogenetic analyses, the isolated strain was named Curvularia sp. RJJ-5 (MN759651). Optimal degradation conditions for strain RJJ-5 were 30°C, and pH 6.0 with 100 mg L-1 erythromycin substrate. The strain could degrade 75.69% erythromycin under this condition. The following metabolites were detected: 3-depyranosyloxy erythromycin A, 7,12-dyhydroxy-6-deoxyerythronolide B, 2,4,6,8,10,12-hexamethyl-3,5,6,11,12,13-hexahydroxy-9-ketopentadecanoic acid and cladinose. It was deduced that the erythromycin A was degraded to 3-depyranosyloxy erythromycin A by glycoside hydrolase in the initial reaction. These results imply that Curvularia sp. RJJ-5 is a novel erythromycin-degrading fungus that can hydrolyze erythromycin using a glycoside hydrolase and has great potential for removing erythromycin from mycelial dreg and the contaminated environment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnaa215DOI Listing

Publication Analysis

Top Keywords

novel erythromycin-degrading
12
erythromycin-degrading fungus
12
curvularia rjj-5
12
erythromycin
12
degradation pathway
8
erythromycin degraded
8
3-depyranosyloxy erythromycin
8
erythromycin glycoside
8
glycoside hydrolase
8
isolation identification
4

Similar Publications

Immobilization of purified enzyme EreB in metalorganic framework (MOF) mesopores for erythromycin degradation.

Environ Res

November 2023

Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin, a commonly used macrolide antibiotic, plays a crucial role in both human medicine and animal husbandry. However, its abuse has led to residual presence in the environment, with problems such as the emergence of resistant bacteria and enrichment of resistance genes. These issues pose significant risks to human health.

View Article and Find Full Text PDF

Biodegradation efficiency and mechanism of erythromycin degradation by Paracoccus versutus W7.

J Environ Manage

April 2023

Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China. Electronic address:

Continuous and excessive usage of erythromycin results in serious environmental pollution and presents a health risk to humans. Biological treatment is considered as an efficient and economical method to remove it from the environment. In this study, a novel erythromycin-degrading bacterial strain, W7, isolated from sewage sludge was identified as Paracoccus versutus.

View Article and Find Full Text PDF

Isolation and identification of a novel erythromycin-degrading fungus, Curvularia sp. RJJ-5, and its degradation pathway.

FEMS Microbiol Lett

January 2021

National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China.

Erythromycin pollution is an important risk to the ecosystem and human health worldwide. Thus, it is urgent to develop effective approaches to decontaminate erythromycin. In this study, we successfully isolated a novel erythromycin-degrading fungus from an erythromycin-contaminated site.

View Article and Find Full Text PDF

The residual erythromycin in fermentation waste can pollute the environment and threaten human health. However, there are no effective approaches to remedy this issue. In this study, an erythromycin-degrading bacterium named RJJ-61 was isolated and identified as a strain of Delftia lacustris based on morphological and phylogenetic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!