Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcity of real defect data to train on. This article demonstrates how an efficient, hybrid finite element (FE) and ray-based simulation can be used to train a convolutional neural network (CNN) to characterize real defects. To demonstrate this methodology, an inline pipe inspection application is considered. This uses four plane wave images from two arrays and is applied to the characterization of cracks of length 1-5 mm and inclined at angles of up to 20° from the vertical. A standard image-based sizing technique, the 6-dB drop method, is used as a comparison point. For the 6-dB drop method, the average absolute error in length and angle prediction is ±1.1 mm and ±8.6°, respectively, while the CNN is almost four times more accurate at ±0.29 mm and ±2.9°. To demonstrate the adaptability of the deep learning approach, an error in sound speed estimation is included in the training and test set. With a maximum error of 10% in shear and longitudinal sound speed, the 6-dB drop method has an average error of ±1.5 mmm and ±12°, while the CNN has ±0.45 mm and ±3.0°. This demonstrates far superior crack characterization accuracy by using deep learning rather than traditional image-based sizing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2020.3045847 | DOI Listing |
This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFPLoS One
January 2025
Academy of Fine Arts, Jiangsu Second Normal University, Nanjing, China.
Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.
View Article and Find Full Text PDFJ Thorac Imaging
September 2024
School of Computer Science and Engineering, The Hebrew University of Jerusalem.
Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.
Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.
J Neuroophthalmol
December 2024
Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.
Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!