Cyclic Copper Uptake and Release from Natural Seawater-A Fully Sustainable Antifouling Technique to Prevent Marine Growth.

Environ Sci Technol

Flinders Institute for NanoScale Science & Technology, College of Science & Engineering, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia.

Published: January 2021

Unwanted growth of fouling organisms on underwater surfaces is an omnipresent challenge for the marine industry, costing billions of dollars every year in the transportation sector alone. Copper, the most widely used biocide in antifouling paints, is at the brink of a total ban in being used in antifouling coatings, as it has become an existential threat to nontargeted species due to anthropogenic copper inputs into protected waters. In the current study, using a porous and cross-linked poly(ethylene imine) structure under marine and fouling environments, available copper from natural seawater was absorbed and electrochemically released back as a potent biocide at 1.3 V vs Ag|AgCl, reducing marine growth by 94% compared to the control electrode (coupon) at 0 V. The coating can also function as an electrochemical copper sensor enabling real-time monitoring of the electrochemical uptake and release of copper ions from natural seawater. This allows tailoring of the electrochemical program to the changing marine environments, i.e., when the vessels move from high-copper-contaminated waters to coastal regions with low concentrations of copper.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c06231DOI Listing

Publication Analysis

Top Keywords

uptake release
8
marine growth
8
natural seawater
8
copper
6
marine
5
cyclic copper
4
copper uptake
4
release natural
4
natural seawater-a
4
seawater-a fully
4

Similar Publications

Purpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.

Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.

View Article and Find Full Text PDF

Achieving dynamic multicolor emission through solid-state molecular motion is of significant importance for advancing applications in organic solid-state luminescent materials. Herein, we report macrocycle crystals with unique forward‒ and retro‒vapofluorochromic behavior, which is realized by reversible amine vapor uptake and amine‒"squeeze" induced guest release. The forward‒vapofluorochromism occurs when aliphatic amines penetrate guest-free macrocycle crystals to form host‒guest complex crystals.

View Article and Find Full Text PDF

Quaternary ammonium chitosan-functionalized mesoporous silica nanoparticles: A promising targeted drug delivery system for the treatment of intracellular MRSA infection.

Carbohydr Polym

March 2025

Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China. Electronic address:

The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake.

View Article and Find Full Text PDF

Alginate-functionalized nanoceria as ion-responsive eye drop formulation to treat corneal abrasion.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:

In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!