Growth differentiating factor-15 (GDF15) is an emerging target for the treatment of obesity and metabolic disease partly due to its ability to suppress food intake. GDF15 expression and secretion are thought to be regulated by a cellular integrated stress response, which involves endoplasmic reticulum (ER) stress. AMPK is another cellular stress sensor, but the relationship between AMPK, ER stress, and GDF15 has not been assessed in vivo. Wildtype (WT), AMPK β1 deficient (AMPKβ1 ), and CHOP mice were treated with three distinct AMPK activators; AICAR, which is converted to ZMP mimicking the effects of AMP on the AMPKγ isoform, R419, which indirectly activates AMPK through inhibition of mitochondrial respiration, or A769662, a direct AMPK activator which binds the AMPKβ1 isoform ADaM site causing allosteric activation. Following treatments, liver Gdf15, markers of ER-stress, AMPK activity, adenine nucleotides, circulating GDF15, and food intake were assessed. AICAR and R419 caused ER and energetic stress, increased GDF15 expression and secretion, and suppressed food intake. Direct activation of AMPK β1 containing complexes by A769662 increased hepatic Gdf15 expression, circulating GDF15, and suppressed food intake, independent of ER stress. The effects of AICAR, R419, and A769662 on GDF15 were attenuated in AMPKβ1 mice. AICAR and A769662 increased GDF15 to a similar extent in WT and CHOP mice. Herein, we provide evidence that AMPK plays a role in mediating the induction of GDF15 under conditions of energetic stress in mouse liver in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202000954RDOI Listing

Publication Analysis

Top Keywords

food intake
16
gdf15
12
gdf15 expression
12
ampk
10
liver gdf15
8
expression secretion
8
ampk β1
8
chop mice
8
circulating gdf15
8
aicar r419
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!