Background: APOE4 has been hypothesized to increase Alzheimer's disease risk by increasing neuroinflammation, though the specific neuroinflammatory pathways involved are unclear.

Objective: Characterize cerebrospinal fluid (CSF) proteomic changes related to APOE4 copy number.

Methods: We analyzed targeted proteomic data from ADNI CSF samples using a linear regression model adjusting for age, sex, and APOE4 copy number, and additional linear models also adjusting for AD clinical status or for CSF Aβ, tau, or p-tau levels. False discovery rate was used to correct for multiple comparisons correction.

Results: Increasing APOE4 copy number was associated with a significant decrease in a CRP peptide level across all five models (q < 0.05 for each), and with significant increases in ALDOA, CH3L1 (YKL-40), and FABPH peptide levels (q < 0.05 for each) except when controlling for AD clinical status or neurodegeneration biomarkers (i.e., CSF tau or p-tau). In all models except the one controlling for CSF Aβ levels, though not statistically significant, there was a consistent inverse direction of association between APOE4 copy number and the levels of all 24 peptides from all 8 different complement proteins measured. The odds of this happening by chance for 24 unrelated peptides would be less than 1 in 16 million.

Conclusion: Increasing APOE4 copy number was associated with decreased CSF CRP levels across all models, and increased CSF ALDOA, CH3L1, and FABH levels when controlling for CSF Aβ levels. Increased APOE4 copy number may also be associated with decreased CSF complement pathway protein levels, a hypothesis for investigation in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902966PMC
http://dx.doi.org/10.3233/JAD-200747DOI Listing

Publication Analysis

Top Keywords

apoe4 copy
16
proteomic changes
8
cerebrospinal fluid
8
copy number
8
apoe4
5
copy number-dependent
4
number-dependent proteomic
4
changes cerebrospinal
4
fluid background
4
background apoe4
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Mechanisms driving cerebrovascular decline during Alzheimer's disease and related dementias (ADRD) are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is an enzyme in the folate/methionine pathway. Variants in MTHFR, notably 677C>T, are associated with ADRD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Framingham Study, Framingham, MA, USA.

Background: Apolipoprotein (Apo) E4, a main susceptibility gene for Alzheimer's disease (AD) is associated with increased vascular dysfunction, amyloid pathology, and neurodegeneration. The effector pathways leading to increased vascular risk in ApoE4 carriers needs to be established. Platelet aggregation is a key marker of vascular dysfunction and studies need to examine whether a relationship of ApoE4 allele status and platelet biology exists METHOD: We examined cross-sectional associations of platelet aggregation with ApoE genotypes (E2 or E4 against E3, the most common) in middle-aged cognitively normal participants at the Framingham Heart Study (FHS) Gen3, New Offspring Spouse (NOS), and Omni2 Cohorts.

View Article and Find Full Text PDF

Evidence of survival bias in the association between and age at ischemic stroke onset.

Front Genet

September 2024

Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

Introduction: Large genome-wide association studies (GWASs) using case-control study designs have now identified tens of loci associated with ischemic stroke (IS). As a complement to these studies, we performed GWAS in a case-only design to identify loci influencing the age at onset (AAO) of ischemic stroke.

Methods: Analyses were conducted in a discovery cohort of 10,857 ischemic stroke cases using a linear regression framework.

View Article and Find Full Text PDF

Objective: Identifying factors that moderate cognitive outcomes following mild traumatic brain injury (mTBI) is crucial. Prospective memory (PM) is a cognitive domain of interest in mTBI recovery as it may be especially sensitive to TBI-related changes. Since studies show that genetic status - particularly possession of the apolipoprotein E (APOE) ε4 allele - can modify PM performance, we investigated associations between mTBI status and APOE-ε4 genotype on PM performance in a well-characterized sample of Veterans with neurotrauma histories.

View Article and Find Full Text PDF

Introduction: The apolipoprotein E () ε4 allele is associated with high risk for Alzheimer's disease. It is unclear whether individual levels of the circulating apoE4 protein in ε4 carriers confer additional risk. Measuring apoE4 protein levels from dried blood spots (DBS) has the potential to provide information on genetic status as well as circulating levels and to include these measures in large survey settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!