Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2020.0183DOI Listing

Publication Analysis

Top Keywords

role utx
4
utx histone
4
histone demethylase
4
demethylase regulation
4
regulation genes
4
genes prostate
4
prostate cancer
4
cancer cell
4
cell lines
4
role
1

Similar Publications

Desipramine reverses remote memory deficits by activating calmodulin-CaMKII pathway in a UTX knockout mouse model of Kabuki syndrome.

Gen Psychiatr

October 2024

Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.

Background: Kabuki syndrome (KS) is a rare developmental disorder characterised by multiple congenital anomalies and intellectual disability. (ubiquitously transcribed tetratricopeptide repeat, X chromosome), which encodes a histone demethylase, is one of the two major pathogenic risk genes for KS. Although intellectual disability is a key phenotype of KS, the role of in cognitive function remains unclear.

View Article and Find Full Text PDF

The retinoblastoma gene product (Rb1), a master regulator of the cell cycle, plays a prominent role in cell differentiation. Previously, by analyzing the differentiation of cells transiently overexpressing the ΔS/N DN Rb1 mutant, we demonstrated that these cells fail to differentiate into mature adipocytes and that they constitutively silence through CpG methylation. Here, we demonstrate that the consequences of the transient expression of ΔS/N DN Rb1 are accompanied by the retention of promoter methylation near the TSS under adipogenic differentiation, thereby preventing its expression.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) as a major methyl donor plays a key role in methylation modification in vivo, and its disorder was closely related to neural tube defects (NTDs). However, the exact mechanism between SAM deficiency and NTDs remained unclearly. Hence, we investigated the association between histone methylation modification and cell differentiation in NTDs mice induced by SAM deficiency.

View Article and Find Full Text PDF

The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved.

View Article and Find Full Text PDF

Natural killer (NK) cells play a crucial role in both innate immunity and the activation of adaptive immunity. The activating effect of Mn on cyclic GMP-AMP(cGAS)-stimulator of interferon genes (STING signaling has been well known, but its effect on NK cells remains elusive. In this study, we identified the vital role of manganese (Mn) in NK cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!