The seed- and air-borne pathogen , the causal agent of lupin anthracnose, is the most important disease in white lupin () worldwide and can cause total yield loss. The aims of this study were to establish a reliable high-throughput phenotyping tool to identify anthracnose resistance in white lupin germplasm and to evaluate a genomic prediction model, accounting for previously reported resistance quantitative trait loci, on a set of independent lupin genotypes. Phenotyping under controlled conditions, performing stem inoculation on seedlings, showed to be applicable for high throughput, and its disease score strongly correlated with field plot disease assessments ( = 0.95, < 0.0001) and yield ( = -0.64, = 0.035). Traditional one-row field disease phenotyping showed no significant correlation with field plot disease assessments ( = 0.31, = 0.34) and yield ( = -0.45, = 0.17). Genomically predicted resistance values showed no correlation with values observed under controlled or field conditions, and the parental lines of the recombinant inbred line population used for constructing the prediction model exhibited a resistance pattern opposite to that displayed in the original (Australian) environment used for model construction. Differing environmental conditions, inoculation procedures, or population structure may account for this result. Phenotyping a diverse set of 40 white lupin accessions under controlled conditions revealed eight accessions with improved resistance to anthracnose. The standardized area under the disease progress curves (sAUDPC) ranged from 2.1 to 2.8, compared with the susceptible reference accession with a sAUDPC of 3.85. These accessions can be incorporated into white lupin breeding programs. In conclusion, our data support stem inoculation-based disease phenotyping under controlled conditions as a time-effective approach to identify field-relevant resistance, which can now be applied to further identify sources of resistance and their underlying genetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-07-20-1531-RE | DOI Listing |
Sci Rep
January 2025
Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland.
White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institut für Angewandte Wissenschaft, Ausbau 5, 18258 Rukieten, Germany.
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy.
The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
This study was examined to optimize extrusion conditions (barrel temperature, feed moisture, and blending ratios of rice, lupin, and pumpkin flour) during processing high-quality extruded products using a twin-screw extruder. A three-factor with three-level response surface methodology with a Box-Behnken design, was applied to evaluate the effects of selected processing conditions: blending ratios of lupin (10-20 %), barrel temperature (115-155 °C) and feed moisture content (14-20 %) on the functional, nutritional and sensory characteristics of the produced snack food. The independent variables significantly affected the nutritional, functional, and physical properties of the extruded snack food.
View Article and Find Full Text PDFPlant Physiol
December 2024
Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!