Automated Chiral Analysis of Amino Acids Based on Chiral Derivatization and Trapped Ion Mobility-Mass Spectrometry.

Anal Chem

Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany.

Published: January 2021

A fast and fully automated method for chiral analysis has been developed by combining a chiral derivatization approach with high-resolution trapped ion mobility separation. Although the presented approach can be potentially applied to diverse types of chiral compounds, several benchmark amino acids were used as model compounds, focusing on the smallest amino acid alanine. An autosampler with an integrated chromatography system was used for inline chiral derivatization with ()-naproxen chloride and subsequent preseparation. Afterwards, derivatized amino acids were directly introduced into the electrospray interface of a trapped ion mobility-mass spectrometer for rapid diastereomer separation in the gas phase. This unique combination of preseparation and trapped ion mobility spectrometry separation in the negative ion mode enabled rapid chiral analysis within 3 min per sample. Furthermore, the diastereomer separation proved to be independent of alkali salts or other metal ions, offering robustness with regard to samples containing high amounts of salts. Highly sensitive detection of amino acid diastereomers was possible down to the lower nanomolar concentration range, and enantiomeric ratios could be readily determined from the recorded mobilograms with excellent reproducibility and precision. To demonstrate the general applicability of our method, alanine and other amino acids were analyzed from soy sauces and seasonings, which revealed extraordinarily high d-Ala contents of up to 99% in all samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03481DOI Listing

Publication Analysis

Top Keywords

amino acids
16
trapped ion
16
chiral analysis
12
chiral derivatization
12
ion mobility-mass
8
ion mobility
8
amino acid
8
diastereomer separation
8
amino
6
chiral
6

Similar Publications

Seasonal Changes in the Gut Microbiota of Halyomorpha halys.

Microb Ecol

December 2024

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.

The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.

View Article and Find Full Text PDF

Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil.

Curr Microbiol

December 2024

Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.

During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.

View Article and Find Full Text PDF

Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild,  = 42; severe, = 43) and healthy controls ( = 25).

View Article and Find Full Text PDF

<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.

View Article and Find Full Text PDF

At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!