Nondestructive analysis of the single-cell molecular phenotype of circulating tumor cells (CTCs) is of great significance to the precise diagnosis and treatment of cancer but is also a huge challenge. To address this issue, here, we develop a facile analysis system that integrates CTCs' capture and molecular phenotype analysis. An isothermal nucleic acid amplification technique named self-folding induced release reaction (sFiR), which has high-efficiency signal amplification capabilities and can run under physiological conditions, is first developed to meet the high requirements for sensitivity and nondestructivity. By combining the sFiR with immune recognition and a single cell capture microchip, the molecular phenotype analysis of a single CTC is realized. As a model, nondestructive analysis of junction plakoglobin (JUP), an overexpressed membrane protein that is closely related to the metastasis of CTCs, is successfully achieved. Results reveal that this sFiR-based analysis system can clearly distinguish the expression of JUP in different cancer cell lines and can present quantitative information on the expression of JUP. Furthermore, the captured and analyzed CTCs maintain their basic physiological activity and can be used for drug sensitivity testing. Considering the excellent performance and ease of operation of the system, it can provide technical support for CTC-based cancer liquid biopsy and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c04156 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFSci Rep
December 2024
Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.
Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.
View Article and Find Full Text PDFNat Commun
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
There is a pressing need to improve risk stratification and treatment selection for HPV-negative head and neck squamous cell carcinoma (HNSCC) due to the adverse side effects of treatment. One of the most important prognostic features is lymph nodes involvement. Previously, we demonstrated that tumor formation in patient-derived xenografts (i.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!