With a large amount of research dedicated to decoding how metallic species bind to proteins, in silico methods are interesting allies for experimental procedures. To date, computational predictors mostly work by identifying the best possible sequence or structural match of the target protein with metal-binding templates. These approaches are fundamentally focused on the first coordination sphere of the metal. Here, we present the BioMetAll predictor that is based on a different postulate: the formation of a potential metal-binding site is related to the geometric organization of the protein backbone. We first report the set of convenient geometric descriptors of the backbone needed for the algorithm and their parameterization from a statistical analysis. Then, the successful benchmark of BioMetAll on a set of more than 90 metal-binding X-ray structures is presented. Because BioMetAll allows structural predictions regardless of the exact geometry of the side chains, it appears extremely valuable for systems whose structures (either experimental or theoretical) are not optimal for metal-binding sites. We report here its application on three different challenging cases: (i) the modulation of metal-binding sites during conformational transition in human serum albumin, (ii) the identification of possible routes of metal migration in hemocyanins, and (iii) the prediction of mutations to generate convenient metal-binding sites for biocatalysts. This study shows that BioMetAll offers a versatile platform for numerous fields of research at the interface between inorganic chemistry and biology and allows to highlight the role of the preorganization of the protein backbone as a marker for metal binding. BioMetAll is an open-source application available at https://github.com/insilichem/biometall.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.0c00827DOI Listing

Publication Analysis

Top Keywords

metal-binding sites
16
protein backbone
8
metal-binding
7
biometall
6
biometall identifying
4
identifying metal-binding
4
sites
4
sites proteins
4
backbone
4
proteins backbone
4

Similar Publications

Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).

View Article and Find Full Text PDF

Precise binding free-energy predictions for ligands targeting metalloproteins, especially zinc-containing histone deacetylase (HDAC) enzymes, require specialized computational approaches due to the unique interactions at metal-binding sites. This study evaluates a docking algorithm optimized for zinc coordination to determine whether it could accurately differentiate between protonated and deprotonated states of hydroxamic acid ligands, a key functional group in HDAC inhibitors (HDACi). By systematically analyzing both protonation states, we sought to identify which state produces docking poses and binding energy estimates most closely aligned with experimental values.

View Article and Find Full Text PDF

The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.

View Article and Find Full Text PDF

MetalNet2: an enhanced server for predicting metal-binding sites in proteomes.

Natl Sci Rev

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, China.

View Article and Find Full Text PDF

The rational design and production of a novel series of engineered protein cages are presented, which have emerged as versatile and adaptable platforms with significant applications in biomedicine. These protein cages are assembled from multiple protein subunits, and precise control over their interactions is crucial for regulating assembly and disassembly, such as the on-demand release of encapsulated therapeutic agents. This approach employs a homo-undecameric, ring-shaped protein scaffold with strategically positioned metal binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!