Why for feed and not for human consumption? The black soldier fly larvae.

Compr Rev Food Sci Food Saf

Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa.

Published: September 2020

With the surge in consumption of insects, the search continues to find ways to increase the popularity of insect-based products in the Western world. The black soldier fly larvae (BSFL), which is mainly utilized for animal feed, has great potential to provide a sustainable source of nutrients for human food. This review aims to discuss some of the key benefits and challenges of BSFL and their potential role as a food ingredient and/or product for human consumption. Few articles specifically discuss BSFL as a food source, therefore a comprehensive literature search strategy consisted of collecting and evaluating published data about BSFL as animal feed that could be relevant to its use in food. The hurdles that need to be overcome in order to introduce BSFL as a viable food option include safety concerns, technofunctional properties, nutritional aspects, consumer attitudes, and product applications for BSFL.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.12609DOI Listing

Publication Analysis

Top Keywords

black soldier
8
soldier fly
8
fly larvae
8
animal feed
8
bsfl
6
food
5
feed human
4
human consumption?
4
consumption? black
4
larvae surge
4

Similar Publications

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Aquaculture plays a critical role in global food security, with Nile tilapia () recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative.

View Article and Find Full Text PDF

This study assessed the bioconversion efficiency of larvae (BSFL) fed on food waste stored under different conditions, focusing on the nutritional and microbial quality of the resulting larval biomass. Food waste was prepared as a fresh diet (FD) or naturally contaminated and stored at 20-22 °C (OS-T, opened storage-tempered) or under refrigeration, at 5-8 °C (CS-C, closed storage-cooled). Refrigerated, closed storage (CS-C) led to the highest rates of waste reduction (91.

View Article and Find Full Text PDF

This study explores the optimisation of rearing substrates for black soldier fly larvae (BSFL). First, the ideal dry matter content of substrates was determined, comparing the standard 30% dry matter (DM) with substrates hydrated to their maximum water holding capacity (WHC). Substrates at maximal WHC yielded significantly higher larval survival rates ( = 0.

View Article and Find Full Text PDF

Evaluating Different Supplements on the Growth Performance and Bioconversion Efficiency of Kitchen Waste by Black Soldier Fly Larvae.

Insects

December 2024

College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China.

Black soldier fly larvae (BSFL) convert kitchen waste into high-quality insect feed. However, the optimal amount of auxiliary materials needed to improve the physical and chemical properties of kitchen waste and enhance BSFL bioconversion efficiency remains unresolved. In this study, maize stover and BSFL frass were added to kitchen waste (in groups G2 and G3, respectively) to explore their effects on the growth performance and bioconversion efficiency of BSFL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!